Publications by authors named "Wen Hui Kuan"

Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is the sixth leading cause of cancer-associated death worldwide with a dismal overall 5-year survival rate of less than 20%. The standard first-line therapy for advanced ESCC is concomitant chemo-radiation therapy (CCRT); however, patients usually develop resistance, resulting in unfavorable outcomes. Therefore, it is urgent to identify the mechanisms underlying CCRT resistance and develop effective treatment strategies.

View Article and Find Full Text PDF

Physiologists have long regarded sweating as an effective and safe means of detoxification, and heavy metals are excreted through sweat to reduce the levels of such metals in the body. However, the body can sweat through many means. To elucidate the difference in the excretion of heavy metals among sweating methods, 12 healthy young university students were recruited as participants (6 men and 6 women).

View Article and Find Full Text PDF

Angiogenesis enhances cancer metastasis and progression, however, the roles of transcription regulation in angiogenesis are not fully defined. ZNF322A is an oncogenic zinc-finger transcription factor. Here, we demonstrate a new mechanism of mutation-driven transcriptional activation and elucidate the interplay between ZNF322A and its upstream transcriptional regulators and downstream transcriptional targets in promoting neo-angiogenesis.

View Article and Find Full Text PDF

Amine-containing pharmaceuticals are the most often detected pharmaceuticals in wastewater and ambient aquatic environments. They can usually be degraded by manganese oxide (MnO), which is a common natural oxidant in soils. Surfactants often coexist with pharmaceuticals in wastewater.

View Article and Find Full Text PDF

This preliminarily study was made to examine the differences in sweat excretions from human eccrine and apocrine sweat glands in dynamic exercise and heat conditions. Sweat samples were collected from six young males while they were either running on a treadmill or sitting in a sauna cabinet. Sweat samples of at least 5 mL from the eccrine (upperback) and apocrine (armpit) sweat glands were collected during a 20min running (or inactive overheating) period.

View Article and Find Full Text PDF

In upstream reaches, epilithic algae are one of the major primary producers and their biomass may alter the energy flow of food webs in stream ecosystems. However, the overgrowth of epilithic algae may deteriorate water quality. In this study, the effects of environmental variables on epilithic algal biomass were examined at 5 monitoring sites in mountain streams of the Wuling basin of subtropical Taiwan over a 5-year period (2006-2011) by using a generalized additive model (GAM).

View Article and Find Full Text PDF

Arsenic immobilization in acid mine drainage (AMD) is required prior to its discharge to safeguard aquatic organisms. Zero-valent aluminum (ZVAl) such as aluminum beverage cans (AlBC) was used to induce the oxidation of As(III) to As(V) and enhance the subsequent As removal from an artificially prepared AMD. While indiscernible As(III) oxidation was found in aerated ZVAl systems, the addition of 0.

View Article and Find Full Text PDF

Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques.

View Article and Find Full Text PDF

The cleanliness of feeding bottles is vital for child health. Although machine cleansing of bottles in the food industry has been established, mechanical and manual cleansing methods are highly variable. This study was undertaken to determine the differences in the cleanliness of bottles that were cleaned using various combinations of bottle materials [glass and polypropylene (PP)], rinsing water volumes (1/3, 1/2, and 2/3 capacity of a bottle), and sustained shaking times (5 seconds and 20 seconds).

View Article and Find Full Text PDF

  This study aims to assess the upstream rainfall thresholds corresponding to the maximum allowable turbidity of source water, using monitoring data and artificial neural network computation. The Taipei Water Source Domain was selected as the study area, and the upstream rainfall records were collected for statistical analysis. Using analysis of variance (ANOVA), the cumulative rainfall records of one-day Ping-lin, two-day Ping-lin, two-day Tong-hou, one-day Guie-shan, and one-day Tai-ping (rainfall in the previous 24 or 48 hours at the named weather stations) were found to be the five most significant parameters for downstream turbidity development.

View Article and Find Full Text PDF

The kinetics and mechanism ofamoxicillin (AMO) degradation using a 1 x 1 molecular sieve-structured manganese oxide (MnO2) was studied. The presence of the buffer solution (i.e.

View Article and Find Full Text PDF

The aim of this study was to research the catalytic effects on the microwave pyrolysis of sugarcane bagasse and thus to discuss the reaction performance, product distribution, and kinetic analysis. With the addition of metal-oxides served as catalysts, reaction results such as mass reduction ratio and reaction rate increased, even the maximum temperature decreased. Adding either NiO or CaO slightly increased the production of H2, while adding either CuO or MgO slightly decreased it.

View Article and Find Full Text PDF

Rice straw is an abundant resource for the production of biofuels and bio-based products. How to convert the recalcitrant lignocellulose effectually is a critical issue. The objective of this study was to investigate the products, mechanism, and kinetics of rice straw pyrolysis by using microwave heating.

View Article and Find Full Text PDF

Corn stover, which is one of the most abundant agricultural residues around the world, could be converted into valuable biofuels and bio based products by means of microwave pyrolysis. After the reaction at the microwave power level of 500W for the processing time of 30min, the reaction performance under N2 atmosphere was generally better than under CO2 atmosphere. This may be due to the better heat absorbability of CO2 molecules to reduce the heat for stover pyrolysis.

View Article and Find Full Text PDF

This study examined the reaction of methylene blue (MB) with tunneled manganese oxide pyrolusite regarding pH and reaction time. MB was cleaved through N-demethylation, in which reaction azure B (AB), azure A (AA), azure C (AC), and thionin (TH) were stepwise generated at all tested pH. Pyrolusite predominantly serves as the oxidant in the oxidative degradation of MB at a pH under the pHiep of pyrolusite (4.

View Article and Find Full Text PDF

The Cr(VI) removal by coconut coir (CC) and chars obtained at various pyrolysis temperatures were evaluated. Increasing the pyrolysis temperature resulted in an increased surface area of the chars, while the corresponding content of oxygen-containing functional groups of the chars decreased. The Cr(VI) removal by CC and CC-derived chars was primarily attributed to the reduction of Cr(VI) to Cr(III) by the materials and the extent and rate of the Cr(VI) reduction were determined by the oxygen-containing functional groups in the materials.

View Article and Find Full Text PDF

To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated.

View Article and Find Full Text PDF

Removal of selenium oxyanions by the binary oxide systems, Al- or Fe-oxides mixed with X-ray noncrystalline SiO(2), was previously not well understood. This study evaluates the adsorption capacity and kinetics of selenium oxyanions by different metal hydroxides onto SiO(2), and uses X-ray absorption spectroscopy (XAS) to assess the interaction between selenium oxyanions and the sorbents at pH 5.0.

View Article and Find Full Text PDF

A sintering with a microwave process was considered to stabilize copper-contaminated sludge and transform it into a sinter because microwave can provide uniform and quick heating. The parameters of addition of iron powder and ferric oxide, crucible modification, and air-forced leading were used in the microwave sintering. The results showed that reduced copper was present and some holes, caused by the high copper-contaminated synthetic sludge passing through the microwave sintering, were distributed throughout the sinters.

View Article and Find Full Text PDF

Industrial wastewater sludge was treated by microwave processes to enhance the stabilization of laden copper. The effects of additives, processing time, microwave adsorbents, moisture content, reaction atmosphere, and cooling gas were investigated. The stabilization results were significantly enhanced by metal powder additives, prolonged microwave processing time, proper moisture content, the addition of carbonaceous materials, and a reaction environment with inert gas.

View Article and Find Full Text PDF

After industrial wastewater sludge passed through an acid-extraction process to reclaim most of the copper ions in it, the residue may still need to be treated by stabilization technologies. The common method for the stabilization of hazardous waste in Taiwan is by cement solidification. However, this method has the disadvantage of an increase in waste volume.

View Article and Find Full Text PDF

A variable order kinetic (VOK) model derived from the Langmuir equation was applied to specify the kinetics of the fluoride removal reaction for electrocoagulation (EC). Synthetic solutions were employed to elucidate the effects of the initial fluoride concentration, the applied current and the initial acidity on the simulation results of the model. The proposed model successfully describes the fluoride removal reaction, except in a system in which the initial concentration of the acid is less than the initial fluoride concentration.

View Article and Find Full Text PDF

A microwave process can be utilized to stabilize the copper ions in heavy metal sludge. The effects of microwave processing on stabilization of heavy metal sludge were studied as a function of additive, power, process time, reaction atmosphere, cooling gas, organic substance, and temperature. Copper leach resistance increased with addition of aluminum metal powder, with increased microwave power, increased processing time, and using a gaseous environment of nitrogen for processing and air for cooling [N2/air].

View Article and Find Full Text PDF