Publications by authors named "Wen Hsing Chen"

The application of the anammox process has great potential in treating nitrogen-rich wastewater. The presence of Fe (II) is expected to affect the growth and activity of anammox bacteria. Short-term (acute) and long-term effects (chronic) of Fe (II) on anammox activity were investigated.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (anammox) has been widely applied for biological nitrogen removal in freshwater systems, and there is a potential for its extension in saline water systems. In this study, the abundance and biodiversity of anammox bacteria were investigated in both saline and freshwater full-scale sewage treatment plants (STPs). The anammox bacteria were widely found in four tested STPs with abundance of 10-10 copies per mL of 16S rRNA gene.

View Article and Find Full Text PDF

Multi-agent simulation (MAS) regulated by microbe-oriented thermodynamics and kinetics equations were performed for exploiting the interspecies dynamics and evolution in anaerobic respiration and bioelectrochemical systems. A newly-defined kinetically thermodynamic parameter is recognized microbes as agents in various conditions, including electron donors and acceptors, temperature, pH, etc. For verification of the MAS, the treatment of synthetic wastewater containing glucose and acetate was evaluated in four 25°C laboratory-scale reactors with different electron acceptors and cathode materials that had potential for methanogenesis, hydrogenesis, sulfidogenesis and exoelectrogenesis.

View Article and Find Full Text PDF

This study aimed to establish a mathematical modeling to evaluate the inhibitory effect of phenolic derivatives on acetone-butanol-ethanol (ABE) fermentation by Clostridium saccharoperbutylacetonicum N1-4. Vanillin, 4-hydroxybenzoic acid, and syringaldehyde were selected to represent guaiacyl, hydroxyphenyl, and syringyl phenols, respectively, to be examined in a series of fed-batch experiments. Results show the presence of phenolic derivatives blocked the pathway of the assimilation of organic acids and reduced cell growth and glucose utilization.

View Article and Find Full Text PDF

The exploration of the energetics of anaerobic digestion systems can reveal how microorganisms cooperate efficiently for cell growth and methane production, especially under low-substrate conditions. The establishment of a thermodynamically interdependent partnership, called anaerobic syntrophy, allows unfavorable reactions to proceed. Interspecies electron transfer and the concentrations of electron carriers are crucial for maintaining this mutualistic activity.

View Article and Find Full Text PDF

This study evaluated a cost-effective approach for the conversion of rice straw into fermentable sugars. The composition of rice straw pretreated with 1 % sulfuric acid or 1 % sodium hydroxide solution was compared to rice straw with no chemical pretreatment. Enzymatic saccharification experiments on non-pretreated rice straw (NPRS), pretreated rice straw (PRS), and pretreated rice straw with acid hydrolysate (PRSAH) were conducted in a series of batch reactors.

View Article and Find Full Text PDF

Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate.

View Article and Find Full Text PDF

The bioleaching process is considered to be more efficient and environmentally friendly than conventional technologies for removal of heavy metals from waste sludge. The objective of this study was to develop an optimal thermophilic bioleaching process for the treatment of waste sludge containing high concentrations of heavy metals. In this study, two operating parameters, sludge solid content and sulfur (substrate) concentration, were studied based on a central composite design (CCD) for their metal solubilization and solid degradation performances.

View Article and Find Full Text PDF

The study aims to investigate a cost-effective approach to convert non-pretreated rice straw hydrolysate into biobutanol. The influences of the initial cell concentration and incubation temperature on biobutanol production were evaluated under both sterile and non-sterile conditions. Results indicate that 100% glucose utilization could be achieved for initial cell concentrations greater than 2100 mg/L under both sterile and non-sterile conditions.

View Article and Find Full Text PDF

The goal of the proposed project was to develop an anaerobic fermentation process that converts negative-value organic wastes into hydrogen-rich gas in a continuous-flow reactor under different operating conditions, such as hydraulic retention time (HRT), heat treatment, pH, and substrates. A series of batch tests were also conducted in parallel to the continuous study to evaluate the hydrogen conversion efficiency of two different organic substrates, namely sucrose and starch. A heat shock (at 90 degrees C for 15 minutes) was applied to the sludge in an external heating chamber known as a sludge activation chamber, as a method to impose a selection pressure to eliminate non-spore-forming, hydrogen-consuming bacteria and to activate spore germination.

View Article and Find Full Text PDF