Publications by authors named "Wen Bin Jian"

In this study, we successfully synthesized nickel oxide (NiO) nanoparticles (NPs), i.e., samples , , and , via an environmentally friendly one-step electro-exploding wire technique by employing three distinct voltage levels of 24, 36, and 48 V, respectively.

View Article and Find Full Text PDF

Soil column tests were conducted to investigate the effects of grass type on water infiltration in a three-layer landfill cover under drying and wetting conditions. Five soil columns were prepared, including one bare, two Bermuda grass-planted and the other two vetiver-planted. During the drying period, the suction of vetiver-planted soil column was the largest, while that of bare case was the lowest.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in organometallic 2D nanosheets have captured attention in optoelectronics, particularly for their ability to be processed in solution, yet their application is limited by the stability of organic components.
  • A new air-stable 2D nanosheet, bis(dithiolene)iron(II) (FeBHT), has been developed using a special polymerization method that protects sensitive sulfur groups, enhancing durability against oxidation.
  • The FeBHT exhibits impressive photoresponse characteristics and maintains over 94% of its original performance even after 60 days in air, suggesting strong potential for practical applications in optoelectronic devices.
View Article and Find Full Text PDF
Article Synopsis
  • PdSe is a new two-dimensional material known for its high carrier mobility and tunable band gap, making it suitable for various electronic and photonic applications.
  • The study reports successful synthesis of few-layer, single-crystal PdSe flakes at a low temperature (300 °C) using low-pressure chemical vapor deposition (CVD) on sapphire substrates.
  • Results show that the properties of PdSe, such as layer-dependent band gap shrinkage and strong transistor performance, hint at its potential for high-quality device fabrication.
View Article and Find Full Text PDF

Two-dimensional (2D) vdW materials have been integrated into optoelectronic devices to achieve exceptional functionality. However, the integration of large-area 2D thin films into organic light-emitting devices (OLEDs) remains challenging because of the finite number of inorganic 2D materials and the high-temperature requirements of their deposition process. The construction of 2D organometallic materials holds immense potential because of their solution synthesis and unlimited structural and functional diversity.

View Article and Find Full Text PDF

Electrical contacts often dominate charge transport properties at the nanoscale because of considerable differences in nanoelectronic device interfaces arising from unique geometric and electrostatic features. Transistors with a tunable Schottky barrier between the metal and semiconductor interface might simplify circuit design. Here, germanium nanowire (Ge NW) transistors with Cu Ge as source/drain contacts formed by both buffered oxide etching treatments and rapid thermal annealing are reported.

View Article and Find Full Text PDF

Point-of-care (POC) application for monitoring of breath ammonia (BA) in hemodialysis (HD) patients has emerged as a promising noninvasive health monitoring approach. In this context, many organic gas sensors have been reported for BA detection. However, one of the major challenges for its integration with affordable household POC application is to achieve stable performance for accuracy and high operational current at low voltage for low-cost read-out circuitry.

View Article and Find Full Text PDF

Tunability and stability in the electrical properties of 2D semiconductors pave the way for their practical applications in logic devices. A robust layered indium selenide (InSe) field-effect transistor (FET) with superior controlled stability is demonstrated by depositing an indium (In) doping layer. The optimized InSe FETs deliver an unprecedented high electron mobility up to 3700 cm V s at room temperature, which can be retained with 60% after 1 month.

View Article and Find Full Text PDF

Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe transistors.

View Article and Find Full Text PDF

Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) have attracted much attention recently. Here, natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors (FETs) but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions, and it also facilitates the investigation of photoelectrons and photovoltaic effects on the nanoscale.

View Article and Find Full Text PDF

Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities.

View Article and Find Full Text PDF

To fabricate reliable nanoelectronics, whether by top-down or bottom-up processes, it is necessary to study the electrical properties of nanocontacts. The effect of nanocontact disorder on device properties has been discussed but not quantitatively studied. Here, by carefully analyzing the temperature dependence of device electrical characteristics and by inspecting them with a microscope, we investigated the Schottky contact and Mott's variable-range-hopping resistances connected in parallel in the nanocontact.

View Article and Find Full Text PDF

We present theoretical and experimental investigations of the magnetism of paramagnetic semiconductor CdSe:Mn nanocrystals and propose an efficient approach to the exposure and analysis of the underlying anti-ferromagnetic interactions between magnetic ions therein. A key advance made here is the development of an analysis method with the exploitation of group theory technique that allows us to distinguish the anti-ferromagnetic interactions between aggregative Mn(2+) ions from the overall pronounced paramagnetism of magnetic-ion-doped semiconductor nanocrystals. By using the method, we clearly reveal and identify the signatures of anti-ferromagnetism from the measured temperature-dependent magnetisms and furthermore determine the average number of Mn(2+) ions and the fraction of aggregative ones in the measured CdSe:Mn nanocrystals.

View Article and Find Full Text PDF

We report ambipolar charge transport in α-molybdenum ditelluride (MoTe2 ) flakes, whereby the temperature dependence of the electrical characteristics was systematically analyzed. The ambipolarity of the charge transport originated from the formation of Schottky barriers at the metal/MoTe2 contacts. The Schottky barrier heights as well as the current on/off ratio could be modified by modulating the electrostatic fields of the back-gate voltage (Vbg) and drain-source voltage (Vds).

View Article and Find Full Text PDF

Two-dimensional layered crystals could show phonon properties that are markedly distinct from those of their bulk counterparts, because of the loss of periodicities along the c-axis directions. Here we investigate the phonon properties of bulk and atomically thin α-MoTe2 using Raman spectroscopy. The Raman spectrum of α-MoTe2 shows a prominent peak of the in-plane E(1)2g mode, with its frequency upshifting with decreasing thickness down to the atomic scale, similar to other dichalcogenides.

View Article and Find Full Text PDF

DNA is a nanowire in nature which chelates Ni ions and forms a conducting chain in its base-pairs (Ni-DNA). Each Ni ion in Ni-DNA exhibits low (Ni(2+)) or high (Ni(3+)) oxidation state and can be switched sequentially by applying bias voltage with different polarities and writing times. The ratio of low and high oxidation states of Ni ions in Ni-DNA represents a programmable multistate memory system with an added capacitive component, in which multistate information can be written, read, and erased.

View Article and Find Full Text PDF

Octahedral PbSe colloidal nanocrystals (NCs) are used to assemble a solid. Because of the special feature of the apexes of the octahedrons, the cross-sectional area of the inter-dot tunneling junctions is much smaller than that formed between spherical NCs. The inter-dot separation between NCs is easily adjusted by mild thermal treatment.

View Article and Find Full Text PDF

Bulk nanostructured materials are made from the assembly of octahedral PbSe nanocrystals. After thermal annealing, the artificial bulk demonstrates a large difference in behavior depending on the temperature, and a large variation of room-temperature resistivity of up to seven orders of magnitude. This variation originates from the high-indexed sharp edges of the octahedral nanocrystals.

View Article and Find Full Text PDF

Conducting diamond nanowires (DNWs) films have been synthesized by N₂-based microwave plasma enhanced chemical vapor deposition. The incorporation of nitrogen into DNWs films is examined by C 1s X-ray photoemission spectroscopy and morphology of DNWs is discerned using field-emission scanning electron microscopy and transmission electron microscopy (TEM). The electron diffraction pattern, the visible-Raman spectroscopy, and the near-edge X-ray absorption fine structure spectroscopy display the coexistence of sp³ diamond and sp² graphitic phases in DNWs films.

View Article and Find Full Text PDF

DEP is one of promising techniques for positioning nanomaterials into the desirable location for nanoelectronic applications. In contrast, the lithography technique is commonly used to make ultra-thin conducting wires and narrow gaps but, due to the limit of patterning resolution, it is not feasible to make electrical contacts on ultra-small nanomaterials for a bottom-up device fabrication. Thus, integrating the lithography and dielectrophoresis, a real bottom-up fabrication can be achieved.

View Article and Find Full Text PDF

A nanotechnological approach is applied to measurements of the electric field dependence of resistance under a high electric field while in low voltage. With this technique, the conduction mechanism on a mesoscopic scale is explored in a single, nonagglomerated nanofiber. Polyaniline nanofibers are prepared by vigorous mixing of aniline and oxidation agent ammonium persulfate in acid solution.

View Article and Find Full Text PDF

Since the successful fabrication of semiconductor nanowires, various techniques have been developed to contact these nanowires and to probe their intrinsic electrical properties. Although many novel quasi one-dimensional materials such as Pb(1 - x)Mn(x)Se nanoarrays were recently produced, their intrinsic electron transport properties have not been extensively studied so far. In this work, we demonstrate that an ordinary source-drain configuration of field-effect transistors or the two-probe measurement can be applied to the exploration of the intrinsic properties of nanowires.

View Article and Find Full Text PDF

A facile, self-seeded, solution-liquid-solid growth of soluble InP and GaP nanowires with a very low amount of native point defects with respect to the carrier concentrations have been synthesized (see scheme) and characterized. They are potentially promising building blocks in optoelectronic applications.We demonstrate a facile method for self-seeded, solution-liquid-solid growth of soluble InP and GaP nanowires at a temperature of approximately 300 degrees C.

View Article and Find Full Text PDF

Nanowire-based nanoelectronic devices will be innovative electronic building blocks from bottom up. The reduced nanocontact area of nanowire devices magnifies the contribution of contact electrical properties. Although a lot of two-contact-based ZnO nanoelectronics have been demonstrated, the electrical properties bringing either from the nanocontacts or from the nanowires have not been considered yet.

View Article and Find Full Text PDF

Diameter controllable ZnO nanowires have been fabricated by thermal evaporation (vapor transport) with various sizes of gold nanoparticles as catalysts. Diluted magnetic semiconductor (DMS) Zn(1-x)Co(x)O nanowires were then made by high energy Co ion implantation. The as-implanted and the argon-annealed Zn(1-x)Co(x)O nanowires displayed weak ferromagnetism while the high-vacuum annealed nanowires exhibited strong ferromagnetic ordering at room temperature.

View Article and Find Full Text PDF