Publications by authors named "Welzel A"

Carp edema virus (CEV) is the causative agent of koi sleepy disease (KSD), a serious gill disease affecting common carp, Cyprinus carpio, and its ornamental variety, koi. After recent detections of the virus in various countries around the world, KSD has emerged as a new global disease in carp. However, the prevalence of the infection in carp populations in a given geographical region has not been studied thoroughly.

View Article and Find Full Text PDF

Unlabelled: The potential of fish or fish oil as supplier for eicosapentaenoic acid (EPA, C20:5n3) and docosahexaenoic acid (DHA, C22:6n3) for reducing cardiovascular risk factors and supporting therapy of chronic inflammatory diseases, has been investigated intensively, but our knowledge about the physiological effects of the individual compounds EPA and DHA are limited.

Study Design: In this double-blind pilot study, thirty-eight patients with defined RA were allocated to consume foods enriched with microalgae oil from Schizochytrium sp. (2.

View Article and Find Full Text PDF

Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs) have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1) pAb aggregates have greater activity than monomers (HMW species > dimers > monomers), 2) pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR) interactions of F(ab) regions, and 3) pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg), had up to ~200- and ~7-fold stronger binding to aggregates of Aβ and transthyretin (TTR) than the monomeric antibody.

View Article and Find Full Text PDF

Evidence for a central role of amyloid β-protein (Aβ) in the genesis of Alzheimer’s disease (AD) has led to advanced human trials of Aβ-lowering agents. The “amyloid hypothesis” of AD postulates deleterious effects of small, soluble forms of Aβ on synaptic form and function. Because selectively targeting synaptotoxic forms of soluble Aβ could be therapeutically advantageous, it is important to understand the full range of soluble Aβ derivatives.

View Article and Find Full Text PDF

Soluble non-fibrillar assemblies of amyloid-beta (Aβ) and aggregated tau protein are the proximate synaptotoxic species associated with Alzheimer's disease (AD). Anti-Aβ immunotherapy is a promising and advanced therapeutic strategy, but the precise Aβ species to target is not yet known. Previously, we and others have shown that natural human IgGs (NAbs) target diverse Aβ conformers and have therapeutic potential.

View Article and Find Full Text PDF

Diverse lines of evidence indicate that pre-fibrillar, diffusible assemblies of the amyloid β-protein (Aβ) play an important role in Alzheimer's disease pathogenesis. Although the precise molecular identity of these soluble toxins remains unsettled, recent experiments suggest that sodium dodecyl sulfate (SDS)-stable Aβ dimers may be the basic building blocks of Alzheimer's disease-associated synaptotoxic assemblies and as such present an attractive target for therapeutic intervention. In the absence of sufficient amounts of highly pure cerebral Aβ dimers, we have used synthetic disulfide cross-linked dimers (free of Aβ monomer or fibrils) to generate conformation-specific monoclonal antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research indicates that soluble forms of amyloid β-protein (Aβ) might be responsible for synaptic issues seen in early Alzheimer's disease.
  • There has been significant effort to isolate and study various Aβ assemblies to understand their role in the disease.
  • This study specifically uses immunoprecipitation/western blotting and size exclusion chromatography/western blotting to analyze Aβ present in cell cultures, human cerebrospinal fluid, and samples from the human cortex.
View Article and Find Full Text PDF

Extracellular fibrous amyloid deposits or intracellular inclusion bodies containing abnormal protein aggregates are pathological hallmarks of several neurodegenerative disorders and it has been hotly debated whether these aberrant protein structures merely occur as a consequence of disease or actually participate in a pathogenic cascade which culminates in neural dysfunction and death. Here, we review the role of aberrant protein structure in the two most common neurodegenerative disorders: Alzheimer's disease and Parkinson's disease and in two rare familial dementias, familial British dementia and familial Danish dementia. We also discuss possible mechanisms by which aberrant protein structures may mediate disease and the therapeutic opportunities this knowledge offers.

View Article and Find Full Text PDF

The molecular pathways leading to Alzheimer-type dementia are not well understood, but the amyloid beta-protein is believed to be centrally involved. The quantity of amyloid beta-protein containing plaques does not correlate well with clinical status, suggesting that if amyloid beta-protein is pathogenic it involves soluble non-plaque material. Using 43 brains from the Newcastle cohort of the population-representative Medical Research Council Cognitive Function and Ageing Study, we examined the relationship between biochemically distinct forms of amyloid beta-protein and the presence of Alzheimer-type dementia.

View Article and Find Full Text PDF

Soluble forms of amyloid-β peptide (Aβ) are a molecular focus in Alzheimer's disease research. Soluble Aβ dimers (≈8 kDa), trimers (≈12 kDa), tetramers (≈16 kDa) and Aβ*56 (≈56 kDa) have shown biological activity. These Aβ molecules have been derived from diverse sources, including chemical synthesis, transfected cells, and mouse and human brain, leading to uncertainty about toxicity and potency.

View Article and Find Full Text PDF

Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells.

View Article and Find Full Text PDF

The current development of immunotherapy for Alzheimer's disease is based on the assumption that human-derived amyloid beta protein (Abeta) can be targeted in a similar manner to animal cell-derived or synthetic Abeta. Because the structure of Abeta depends on its source and the presence of cofactors, it is of great interest to determine whether human-derived oligomeric Abeta species impair brain function and, if so, whether or not their disruptive effects can be prevented using antibodies. We report that untreated ex vivo human CSF that contains Abeta dimers rapidly inhibits hippocampal long-term potentiation in vivo and that acute systemic infusion of an anti-Abeta monoclonal antibody can prevent this disruption of synaptic plasticity.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by massive neuron loss in distinct brain regions, extracellular accumulations of the amyloid precursor protein-fragment amyloid-beta (A beta) and intracellular tau fibrils containing hyperphosphorylated tau. Experimental evidence suggests a relation between presenilin (PS) mutations, A beta formation, and tau phosphorylation in triggering cell death; however, how A beta and PS affect tau-dependent degeneration is unknown. Using herpes simplex virus 1-mediated gene-transfer of fluorescent-tagged tau constructs in primary cortical neurons, we demonstrate that tau expression exerts a neurotoxic effect that is increased with a construct mimicking disease-like hyperphosphorylation [pseudohyperphosphorylated (PHP) tau].

View Article and Find Full Text PDF