Acta Crystallogr F Struct Biol Commun
September 2022
The identity of the crystallized protein in the article by Juneja et al. [(2014), Acta Cryst. F70, 260-262] is corrected.
View Article and Find Full Text PDFHasR in the outer membrane of Serratia marcescens binds secreted, heme-loaded HasA and translocates the heme to the periplasm to satisfy the cell's demand for iron. The previously published crystal structure of the wild-type complex showed HasA in a very specific binding arrangement with HasR, apt to relax the grasp on the heme and assure its directed transfer to the HasR-binding site. Here, we present a new crystal structure of the heme-loaded HasA arranged with a mutant of HasR, called double mutant (DM) in the following that seemed to mimic a precursor stage of the abovementioned final arrangement before heme transfer.
View Article and Find Full Text PDFAttenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was applied to investigate the folding of an outer membrane protein, TtoA, assisted by TtOmp85, both from the thermophilic eubacterium Thermus thermophilus. To directly monitor the formation of β-sheet structure in TtoA and to analyze the function of TtOmp85, we immobilized unfolded TtoA on an ATR crystal. Interaction with TtOmp85 initiated TtoA folding as shown by time-dependent spectra recorded during the folding process.
View Article and Find Full Text PDFIn many hyperthermophilic archaea the DNA binding protein TrmBL2 or one of its homologues is abundantly expressed. TrmBL2 is thought to play a significant role in modulating the chromatin architecture in combination with the archaeal histone proteins and Alba. However, its precise physiological role is poorly understood.
View Article and Find Full Text PDFThe gene encoding Aspergillus nidulans acetamidase (amdS) was placed under control of Candida albicans ACT1 promoter and terminator sequences and then cloned into a plasmid containing C. glabrata ARS10,CEN8 or ARS10+CEN8 sequences. All plasmids transformed C.
View Article and Find Full Text PDFThe crystal structure of TrmBL2 from the archaeon Pyrococcus furiosus shows an association of two pseudosymmetric dimers. The dimers follow the prototypical design of known bacterial repressors with two helix-turn-helix (HTH) domains binding to successive major grooves of the DNA. However, in TrmBL2, the two dimers are arranged at a mutual displacement of approximately 2bp so that they associate with the DNA along the double-helical axis at an angle of approximately 80°.
View Article and Find Full Text PDFChorismatases are a class of chorismate-converting enzymes involved in the biosynthetic pathways of different natural products, many of them with interesting pharmaceutical characteristics. So far, three subfamilies of chorismatases are described that convert chorismate into different (dihydro-)benzoate derivatives (CH-FkbO, CH-Hyg5, and CH-XanB2). Until now, the detailed enzyme mechanism and the molecular basis for the different reaction products were unknown.
View Article and Find Full Text PDFOuter membrane proteins are vital for Gram-negative bacteria and organisms that inherited organelles from them. Proteins from the Omp85/BamA family conduct the insertion of membrane proteins into the outer membrane. We show that an eight-stranded outer membrane β-barrel protein, TtoA, is inserted and folded into liposomes by an Omp85 homologue.
View Article and Find Full Text PDFThe site-selective introduction of photo-crosslinking groups into proteins enables the discovery and mapping of weak and/or transient protein interactions with high spatiotemporal resolution, both in vitro and in vivo. We report the genetic encoding of a furan-based, photo-crosslinking amino acid in human cells; it can be activated with red light, thus offering high penetration depths in biological samples. This is achieved by activation of the amino acid and charging to its cognate tRNA by a pyrrolysyl-tRNA-synthetase (PylRS) mutant with broad polyspecificity.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2014
Sea urchin spicules have a calcitic mesocrystalline architecture that is closely associated with a matrix of proteins and amorphous minerals. The mechanism underlying spicule formation involves complex processes encompassing spatio-temporally regulated organic-inorganic interactions. C-type lectin domains are present in several spicule matrix proteins in Strongylocentrotus purpuratus, implying their role in spiculogenesis.
View Article and Find Full Text PDFThe genetic alphabet is composed of two base pairs, and the development of a third, unnatural base pair would increase the genetic and chemical potential of DNA. d5SICS-dNaM is one of the most efficiently replicated unnatural base pairs identified to date, but its pairing is mediated by only hydrophobic and packing forces, and in free duplex DNA it forms a cross-strand intercalated structure that makes its efficient replication difficult to understand. Recent studies of the KlenTaq DNA polymerase revealed that the insertion of d5SICSTP opposite dNaM proceeds via a mutually induced-fit mechanism, where the presence of the triphosphate induces the polymerase to form the catalytically competent closed structure, which in turn induces the pairing nucleotides of the developing unnatural base pair to adopt a planar Watson-Crick-like structure.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2013
Functional nucleotides are important in many cutting-edge biomolecular techniques. Often several modified nucleotides have to be incorporated consecutively. This structural study of KlenTaq DNA polymerase, a truncated form of Thermus aquaticus DNA polymerase, gives first insights how multiple modifications are processed by a DNA polymerase and, therefore, contribute to the understanding of these enzymes in their interplay with artificial substrates.
View Article and Find Full Text PDFChorismate-converting enzymes are involved in many biosynthetic pathways leading to natural products and can often be used as tools for the synthesis of chemical building blocks. Chorismatases such as FkbO from Streptomyces species catalyse the hydrolysis of chorismate yielding (dihydro)benzoic acid derivatives. In contrast to many other chorismate-converting enzymes, the structure and catalytic mechanism of a chorismatase had not been previously elucidated.
View Article and Find Full Text PDFReplicate it: Structures of KOD and 9°N DNA polymerases, two enzymes that are widely used to replicate DNA with highly modified nucleotides, were solved at high resolution in complex with primer/template duplex. The data elucidate substrate interaction of the two enzymes and pave the way for further optimisation of the enzymes and substrates.
View Article and Find Full Text PDFTrmB is a repressor that binds maltose, maltotriose, and sucrose, as well as other α-glucosides. It recognizes two different operator sequences controlling the TM (Trehalose/Maltose) and the MD (Maltodextrin) operon encoding the respective ABC transporters and sugar-degrading enzymes. Binding of maltose to TrmB abrogates repression of the TM operon but maintains the repression of the MD operon.
View Article and Find Full Text PDFModified nucleotides play a paramount role in many cutting-edge biomolecular techniques. The present structural study highlights the plasticity and flexibility of the active site of a DNA polymerase while incorporating non-polar "Click-able" nucleotide analogs and emphasizes new insights into rational design guidelines for modified nucleotides.
View Article and Find Full Text PDFMany candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair, dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure.
View Article and Find Full Text PDFThe capability of DNA polymerases to accept chemically modified nucleotides is of paramount importance for many biotechnological applications. Although these analogues are widely used, the structural basis for the acceptance of the unnatural nucleotide surrogates has been only sparsely explored. Here we present in total six crystal structures of modified 2'-deoxynucleoside-5'-O-triphosphates (dNTPs) carrying modifications at the C5 positions of pyrimidines or C7 positions of 7-deazapurines in complex with a DNA polymerase and a primer/template complex.
View Article and Find Full Text PDFCleavage of the N-glycosidic bond that connects the nucleobase to the backbone in DNA leads to abasic sites, the most frequent lesion under physiological conditions. Several DNA polymerases preferentially incorporate an A opposite this lesion, a phenomenon termed "A-rule." Accordingly, KlenTaq, the large fragment of Thermus aquaticus DNA polymerase I, incorporates a nucleotide opposite an abasic site with efficiencies of A > G > T > C.
View Article and Find Full Text PDFDNA is being constantly damaged by endo- and exogenous agents such as reactive oxygen species, chemicals, radioactivity, and ultraviolet radiation. Additionally, DNA is inherently labile, and this can result in, for example, the spontaneous hydrolysis of the glycosidic bond that connects the sugar and the nucleobase moieties in DNA; this results in abasic sites. It has long been obscure how cells achieve DNA synthesis past these lesions, and only recently has it been discovered that several specialized DNA polymerases are involved in translesion synthesis.
View Article and Find Full Text PDFMixed protein-surfactant micelles are used for in vitro studies and 3D crystallization when solutions of pure, monodisperse integral membrane proteins are required. However, many membrane proteins undergo inactivation when transferred from the biomembrane into micelles of conventional surfactants with alkyl chains as hydrophobic moieties. Here we describe the development of surfactants with rigid, saturated or aromatic hydrocarbon groups as hydrophobic parts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
Numerous 2'-deoxynucleoside triphosphates (dNTPs) that are functionalized with spacious modifications such as dyes and affinity tags like biotin are substrates for DNA polymerases. They are widely employed in many cutting-edge technologies like advanced DNA sequencing approaches, microarrays, and single molecule techniques. Modifications attached to the nucleobase are accepted by many DNA polymerases, and thus, dNTPs bearing nucleobase modifications are predominantly employed.
View Article and Find Full Text PDFThe DNA of every cell in the human body gets damaged more than 50,000 times a day. The most frequent damages are abasic sites. This kind of damage blocks proceeding DNA synthesis by several DNA polymerases that are involved in DNA replication and repair.
View Article and Find Full Text PDF