The unprecedented use of high-resolution continuum source molecular absorption spectrometry (HR-CS MAS) for the fractionation of organic and inorganic sulfur (S) species through monitoring the CS molecule is presented here. Two separate methods for determining organic (CS) and inorganic (CS) sulfur were developed to work sequentially. The optimized temperature program for both methodologies has two pyrolysis steps and one vaporization step (1st T: 1800 and 2T: 800 °C, and T: 2500 °C).
View Article and Find Full Text PDFThe efficient transfer of H plays a critical role in catalytic hydrogenation, particularly for the removal of recalcitrant contaminants from water. One of the most persistent contaminants, perfluorooctanoic acid (PFOA), was used to investigate how the method of H transfer affected the catalytic hydrodefluorination ability of elemental palladium nanoparticles (PdNPs). PdNPs were synthesized through an in situ autocatalytic reduction of Pd driven by H from the membrane.
View Article and Find Full Text PDFPFAAs (perfluorinated alkyl acids) have become a concern because of their widespread pollution and persistence. A previous study introduced a novel approach for removing and hydrodefluorinating perfluorooctanoic acid (PFOA) using palladium nanoparticles (PdNPs) in situ synthesized on H-gas-transfer membranes. This work focuses on the products, pathways, and optimal catalyst conditions.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFASs) comprise a group of widespread and recalcitrant contaminants that are attracting increasing concern due to their persistence and adverse health effects. This study evaluated removal of one of the most prevalent PFAS, perfluorooctanoic acid (PFOA), in H-based membrane catalyst-film reactors (H-MCfRs) coated with palladium nanoparticles (PdNPs). Batch tests documented that PdNPs catalyzed hydrodefluorination of PFOA to partially fluorinated and nonfluorinated octanoic acids; the first-order rate constant for PFOA removal was 0.
View Article and Find Full Text PDFHerein, we describe a simple and efficient route to access aniline-derived diselenides and evaluate their antioxidant/GPx-mimetic properties. The diselenides were obtained in good yields via ipso-substitution/reduction from the readily available 2-nitroaromatic halides (Cl, Br, I). These diselenides present GPx-mimetic properties, showing better antioxidant activity than the standard GPx-mimetic compounds, ebselen and diphenyl diselenide.
View Article and Find Full Text PDFDDT (1,1,1-trichloro-2,2-bi(p-chlorophenyl)-ethane) and its metabolites (DDD, 1,1-dichloro-2,2-bis-(4'-chlorophenyl)ethane, and DDE, 1,1-dichloro-2,2-bis-(4'-chlorophenyl)ethylene) are persistent organic pollutants that can be catalytically degraded into a less toxic and less persistent compound. In this work, ecofriendly methodologies for catalyst synthesis, catalytic degradation of DDT and reaction monitoring have been proposed. Three types of Pd-based nanoparticles, NPs, (Pd, Au-on-Pd and Cu-on-Pd) were synthesized and used for catalytic hydrodechlorination of DDT and its metabolites.
View Article and Find Full Text PDFOligosaccharide-based amphiphiles were readily prepared by click chemistry from ω-azido-hexanoic or dodecanoic acids with propargyl-functionalized maltoheptaose or xyloglucanoligosaccharides. These amphiphilic compounds were used as capping/stabilizer agents in order to obtain highly stable catalytic silver glyconanoparticles (Ag-GNPs) through the in situ reduction of silver nitrate with NaBH4. With a view to long-term storage, the stabilization was optimized using a multivariate approach, and the nanoparticles were characterized by UV-vis, TEM, SAXS, and DLS.
View Article and Find Full Text PDF