Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.
View Article and Find Full Text PDFTumor tissue collections are used to uncover pathways associated with disease outcomes that can also serve as targets for cancer treatment, ideally by comparing the molecular properties of cancer tissues to matching normal tissues. The quality of such collections determines the value of the data and information generated from their analyses including expression and modifications of nucleic acids and proteins. These biomolecules are dysregulated upon ischemia and decompose once the living cells start to decay into inanimate matter.
View Article and Find Full Text PDFCellular senescence accumulates with age and has been shown to impact numerous physiological and pathological processes, including immune function. The role of cellular senescence in cancer is multifaceted, but the impact on immune checkpoint inhibitor response and toxicity has not been fully evaluated. In this review, we evaluate the impact of cellular senescence in various biological compartments, including the tumor, the tumor microenvironment, and the immune system, on immune checkpoint inhibitor efficacy and toxicity.
View Article and Find Full Text PDFPost-transplant complications reduce allograft and recipient survival. Current approaches for detecting allograft injury non-invasively are limited and do not differentiate between cellular mechanisms. Here, we monitor cellular damages after liver transplants from cell-free DNA (cfDNA) fragments released from dying cells into the circulation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2023
The estrogen receptor alpha (ERα) is a steroid receptor that is pivotal in the initiation and progression of most breast cancers. ERα regulates gene transcription through recruitment of essential coregulators, including the steroid receptor coactivator AIB1 (Amplified in Breast Cancer 1). AIB1 itself is an oncogene that is overexpressed in a subset of breast cancers and is known to play a role in tumor progression and resistance to endocrine therapy through multiple mechanisms.
View Article and Find Full Text PDFMutations in the gene ankyrin repeat domain containing 11 (/) play a role in neurodegenerative disorders, and its loss of heterozygosity and low expression are seen in some cancers. Here, we show that low ANCO1 mRNA and protein expression levels are prognostic markers for poor clinical outcomes in breast cancer and that loss of nuclear ANCO1 protein expression predicts lower overall survival of patients with triple-negative breast cancer (TNBC). Knockdown of ANCO1 in early-stage TNBC cells led to aneuploidy, cellular senescence, and enhanced invasion in a 3D matrix.
View Article and Find Full Text PDFRadiation therapy is an effective cancer treatment, although damage to healthy tissues is common. Here we analyzed cell-free, methylated DNA released from dying cells into the circulation to evaluate radiation-induced cellular damage in different tissues. To map the circulating DNA fragments to human and mouse tissues, we established sequencing-based, cell-type-specific reference DNA methylation atlases.
View Article and Find Full Text PDFBackground: CDK4/6 inhibitors (CDKi) have improved disease control in hormone-receptor-positive, HER2-negative metastatic breast cancer, but most patients develop progressive disease.
Methods: We asked whether host stromal senescence after CDK4/6 inhibition affects metastatic seeding and growth of CDKi-resistant mammary cancer cells by using the p16-INK-ATTAC mouse model of inducible senolysis.
Results: Palbociclib pretreatment of naïve mice increased lung seeding of CDKi-resistant syngeneic mammary cancer cells, and this effect was reversed by depletion of host senescent cells.
Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers.
View Article and Find Full Text PDFThoracic high dose radiation therapy (RT) for cancer has been associated with early and late cardiac toxicity. To assess altered rates of cardiomyocyte cell death due to RT we monitored changes in cardiomyocyte-specific, cell-free methylated DNA (cfDNA) shed into the circulation. Eleven patients with distal esophageal cancer treated with neoadjuvant chemoradiation to 50.
View Article and Find Full Text PDFInvasion and metastatic spread of cancer cells are the major cause of death from cancer. Assays developed early on to measure the invasive potential of cancer cell populations typically generate a single endpoint measurement that does not distinguish between cancer cell subpopulations with different invasive potential. Also, the tumor microenvironment consists of different resident stromal and immune cells that alter and participate in the invasive behavior of cancer cells.
View Article and Find Full Text PDFPancreatic adenocarcinoma is typically detected at a late stage and thus shows only limited sensitivity to treatment, making it one of the deadliest malignancies. In this study, we evaluate changes in microRNA (miR) patterns in peripheral blood as a potential readout of treatment responses of pancreatic cancer to inhibitors that target tumor-stroma interactions. Mice with pancreatic cancer cell (COLO357PL) xenografts were treated with inhibitors of either fibroblast growth factor receptor kinase (FGFR; PD173074) or anaplastic lymphoma kinase receptor (ALK; TAE684).
View Article and Find Full Text PDFPancreatic cancer remains largely unresponsive to immune modulatory therapy attributable in part to an immunosuppressive, desmoplastic tumor microenvironment. Here, we analyze mechanisms of cancer cell-autonomous resistance to T cells. We used a 3D co-culture model of cancer cell spheroids from the KPC (LSL- /LSL- /) pancreatic ductal adenocarcinoma (PDAC) model, to examine interactions with tumor-educated T cells isolated from draining lymph nodes of PDAC-bearing mice.
View Article and Find Full Text PDFAngiotensin II can cause oxidative stress and increased blood pressure that result in long term cardiovascular pathologies. Here we evaluated the contribution of cellular senescence to the effect of chronic exposure to low dose angiotensin II in a model that mimics long term tissue damage. We utilized the INK-ATTAC (p16-Apoptosis Through Targeted Activation of Caspase 8) transgenic mouse model that allows for conditional elimination of p16 -dependent senescent cells by administration of AP20187.
View Article and Find Full Text PDFDetection of cellular changes in tissue biopsies has been the basis for cancer diagnostics. However, tissue biopsies are invasive and limited by inaccuracies due to sampling locations, restricted sampling frequency, and poor representation of tissue heterogeneity. Liquid biopsies are emerging as a complementary approach to traditional tissue biopsies to detect dynamic changes in specific cell populations.
View Article and Find Full Text PDFAIB1Δ4 is an N-terminally truncated isoform of the oncogene amplified in breast cancer 1 (AIB1) with increased expression in high-grade human ductal carcinoma (DCIS). However, the role of AIB1Δ4 in DCIS malignant progression has not been defined. Here we CRISPR-engineered RNA splice junctions to produce normal and early-stage DCIS breast epithelial cells that expressed only AIB1Δ4.
View Article and Find Full Text PDFCancer cell vascular invasion and extravasation at metastatic sites are hallmarks of malignant progression of cancer and associated with poor disease outcome. Here we describe an in vivo approach to study the invasive ability of cancer cells into the vasculature and their hematogenous metastatic seeding in zebrafish (Danio rerio). In one approach, extravasation of fluorescently labeled cancer cells is monitored in zebrafish embryos whose vasculature is marked by a contrasting fluorescent reporter.
View Article and Find Full Text PDFAcute kidney injury (AKI) causes multiple organ dysfunction. Here, we identify a possible mechanism that can drive brain vessel injury after AKI. We induced 30-minute bilateral renal ischemia-reperfusion injury in C57Bl/6 mice and isolated brain microvessels and macrovessels 24 hours or 1 week later to test their responses to vasoconstrictors and found that after AKI brain vessels were sensitized to Ang II (angiotensin II).
View Article and Find Full Text PDFSignificant progress has been made in treating cancer with immunotherapy, although a large number of cancers remain resistant to treatment. A limited number of assays allow for direct monitoring and mechanistic insights into the interactions between tumor and immune cells, amongst which, T-cells play a significant role in executing the cytotoxic response of the adaptive immune system to cancer cells. Most assays are based on two-dimensional (2D) co-culture of cells due to the relative ease of use but with limited representation of the invasive growth phenotype, one of the hallmarks of cancer cells.
View Article and Find Full Text PDFTranscription factors critical for the transition of normal breast epithelium to ductal carcinoma in situ (DCIS) and invasive breast cancer are not clearly defined. Here, we report that the expression of a subset of YAP-activated and YAP-repressed genes in normal mammary and early-stage breast cancer cells is dependent on the nuclear co-activator AIB1. Gene expression, sequential ChIP, and ChIP-seq analyses show that AIB1 and YAP converge upon TEAD for transcriptional activation and repression.
View Article and Find Full Text PDFClinical follow-up aided by changes in the expression of circulating microRNAs (miRs) may improve prognostication of pancreatic ductal adenocarcinoma (PDAC) patients. Changes in 179 circulating miRs due to cancer progression in the transgenic ; ; (KPC) animal model of PDAC were analyzed for serum miRs that are altered in metastatic disease. In addition, expression levels of 250 miRs were profiled before and after pancreaticoduodenectomy in the serum of two patients with resectable PDAC with different progression free survival (PFS) and analyzed for changes indicative of PDAC recurrence after resection.
View Article and Find Full Text PDF