Quantum computation and simulation rely on long-lived qubits with controllable interactions. Trapped polar molecules have been proposed as a promising quantum computing platform, offering scalability and single-particle addressability while still leveraging inherent complexity and strong couplings of molecules. Recent progress in the single quantum state preparation and coherence of the hyperfine-rotational states of individually trapped molecules allows them to serve as promising qubits, with intermolecular dipolar interactions creating entanglement.
View Article and Find Full Text PDFBackground: Available treatments for older patients with primary diffuse large B-cell CNS lymphoma (PCNSL) offer progression-free survival of up to 16 months. We aimed to investigate an intensified treatment of high-dose chemotherapy and autologous haematopoietic stem-cell transplantation (HSCT) in older patients with PCNSL.
Methods: MARTA was a prospective, single-arm, phase 2 study done at 15 research hospitals in Germany.
In conventional Bardeen-Cooper-Schrieffer superconductors, electrons with opposite momenta bind into Cooper pairs due to an attractive interaction mediated by phonons in the material. Although superconductivity naturally emerges at thermal equilibrium, it can also emerge out of equilibrium when the system parameters are abruptly changed. The resulting out-of-equilibrium phases are predicted to occur in real materials and ultracold fermionic atoms, but not all have yet been directly observed.
View Article and Find Full Text PDFThe operator space entanglement entropy, or simply "operator entanglement" (OE), is an indicator of the complexity of quantum operators and of their approximability by matrix product operators (MPOs). We study the OE of the density matrix of 1D many-body models undergoing dissipative evolution. It is expected that, after an initial linear growth reminiscent of unitary quench dynamics, the OE should be suppressed by dissipative processes as the system evolves to a simple stationary state.
View Article and Find Full Text PDFObjective: To contribute data on long-term outcome and potential curative impact of ASCT in FL, especially following HDT with the BEAM protocol (BCNU, etoposide, cytarabine and melphalan), given very limited data on this topic in the literature.
Patients And Methods: Patients with FL (n = 76) were treated in our institution with HDT and ASCT. In the case of long-term remission (≥8 years), peripheral blood was tested for minimal residual disease by t(14;18)- and IGH-PCR, including the last follow-up.
We study a simple model for photoinduced electron transfer reactions for the case of many donor-acceptor pairs that are collectively and homogeneously coupled to a photon mode of a cavity. We describe both coherent and dissipative collective effects resulting from this coupling within the framework of a quantum optics Lindblad master equation. We introduce a method to derive an effective rate equation for electron transfer by adiabatically eliminating donor and acceptor states and the cavity mode.
View Article and Find Full Text PDFCore-binding factor (CBF) acute myeloid leukemia (AML) encompasses AML with inv(16)(p13.1q22) and AML with t(8;21)(q22;q22.1).
View Article and Find Full Text PDFWe propose a mechanism to realize high-yield molecular formation from ultracold atoms. Atom pairs are continuously excited by a laser, and a collective decay into the molecular ground state is induced by a coupling to a lossy cavity mode. Using a combination of analytical and numerical techniques, we demonstrate that the molecular yield can be improved by simply increasing the number of atoms, and can overcome efficiencies of state-of-the-art association schemes.
View Article and Find Full Text PDFObjective: The aim of this study was to examine chemotherapy concomitant in vitro activation of human telomerase reverse transcriptase (hTERT)-specific T cell responses in peripheral blood mononuclear cell (PBMC) samples of patients with advanced non-small cell lung cancer (NSCLC).
Methods: PBMCs depleted of regulatory T cells were stimulated by peptide loaded dendritic cells (DC) matured either by application of cytokines (cDC) or a Toll-like receptor 7/8-agonist combined with a soluble CD40-ligand (ligDC). The hTERT peptide-specific T cell responses were assessed using flow cytometry for intracellular interferon-γ (IFN-γ).
NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730).
View Article and Find Full Text PDFUnderstanding how comets work--what drives their activity--is crucial to the use of comets in studying the early solar system. EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flew past comet 103P/Hartley 2, one with an unusually small but very active nucleus, taking both images and spectra. Unlike large, relatively inactive nuclei, this nucleus is outgassing primarily because of CO(2), which drags chunks of ice out of the nucleus.
View Article and Find Full Text PDFThe EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model.
View Article and Find Full Text PDFCalibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified.
View Article and Find Full Text PDFWe report the direct detection of solid water ice deposits exposed on the surface of comet 9P/Tempel 1, as observed by the Deep Impact mission. Three anomalously colored areas are shown to include water ice on the basis of their near-infrared spectra, which include diagnostic water ice absorptions at wavelengths of 1.5 and 2.
View Article and Find Full Text PDFDeep Impact collided with comet Tempel 1, excavating a crater controlled by gravity. The comet's outer layer is composed of 1- to 100-micrometer fine particles with negligible strength (<65 pascals). Local gravitational field and average nucleus density (600 kilograms per cubic meter) are estimated from ejecta fallback.
View Article and Find Full Text PDFThe NEAR-Shoemaker spacecraft was designed to provide a comprehensive characterization of the S-type asteroid 433 Eros (refs 1,2,3), an irregularly shaped body with approximate dimensions of 34 x 13 x 13 km. Following the completion of its year-long investigation, the mission was terminated with a controlled descent to its surface, in order to provide extremely high resolution images. Here we report the results of the descent on 12 February 2001, during which 70 images were obtained.
View Article and Find Full Text PDFOn 25 October 2000, the Near Earth Asteroid Rendevous (NEAR)-Shoemaker spacecraft executed a low-altitude flyover of asteroid 433 Eros, making it possible to image the surface at a resolution of about 1 meter per pixel. The images reveal an evolved surface distinguished by an abundance of ejecta blocks, a dearth of small craters, and smooth material infilling some topographic lows. The subdued appearance of craters of different diameters and the variety of blocks and different degrees of their burial suggest that ejecta from several impact events blanketed the region imaged at closest approach and led to the building up of a substantial and complex regolith consisting of fine materials and abundant meter-sized blocks.
View Article and Find Full Text PDFDuring the 23 December 1998 flyby of asteroid 433 Eros, the Near-Earth Asteroid Rendezvous (NEAR) spacecraft obtained 222 images of Eros, as well as supporting spectral observations. The images cover slightly more than two-thirds of Eros (best resolution is approximately 400 meters per pixel) and reveal an elongated, cratered body with a linear feature extending for at least 20 kilometers. Our observations show that Eros has dimensions of 33 x 13 x 13 kilometers.
View Article and Find Full Text PDF