This paper examines the need for innovation in phosphorus fertilizer production. An important area requiring action is the use of sulfuric acid in the wet chemical process (WCP), which is the dominant process in phosphate fertilizer production. About 50 % of the sulfuric acid produced worldwide is used for fertilizers, and ~95 % of the world's fertilizers are based on sulfuric acid.
View Article and Find Full Text PDFThis article comments on: Segura M, García A, Gamarra G, Benítez A, Iglesias-Moya J, Martínez C, Jamilena M. 2024. An -resistant mutation in the transcription factor gene enhances carpel arrest and ectopic boundary specification in flower development.
View Article and Find Full Text PDFWaterlogging leads to major crop losses globally, particularly for waterlogging-sensitive crops such as barley. Waterlogging reduces oxygen availability and results in additional stresses, leading to the activation of hypoxia and stress response pathways that promote plant survival. Although certain barley varieties have been shown to be more tolerant to waterlogging than others and some tolerance-related quantitative trait loci have been identified, the molecular mechanisms underlying this trait are mostly unknown.
View Article and Find Full Text PDFMethods Mol Biol
August 2023
Assessing the molecular changes that occur over the course of flower development is hampered by difficulties in isolating sufficient amounts of floral tissue at specific developmental stages. This is especially problematic when investigating molecular events at early stages of Arabidopsis flower development, as floral buds are minute and are initiated sequentially so that a single flower on an inflorescence is at a given developmental stage. Moreover, young floral buds are hidden by older flowers, which presents an additional challenge for dissection.
View Article and Find Full Text PDFBackground: A commonly used approach to study the interaction of two proteins of interest (POIs) in vivo is measuring Förster Resonance Energy Transfer (FRET). This requires the expression of the two POIs fused to two fluorescent proteins that function as a FRET pair. A precise way to record FRET is Fluorescence Lifetime IMaging (FLIM) which generates quantitative data that, in principle, can be used to resolve both complex structure and protein affinities.
View Article and Find Full Text PDFMADS-domain transcription factors are involved in the control of a multitude of processes in eukaryotes, and in plants, they play particularly important roles during reproductive development. Among the members of this large family of regulatory proteins are the floral organ identity factors, which specify the identities of the different types of floral organs in a combinatorial manner. Much has been learned over the past three decades about the function of these master regulators.
View Article and Find Full Text PDFUnlabelled: There is increasing demand for science to contribute to solving societal problems (solutionism). Thereby, scientists may become normative activists for solving certain problems (advocacy). When doing this, they may insufficiently differentiate between scientific and political modes of reasoning and validation (de-differentiationism), which is sometimes linked to questionable forms of utilizing the force of facts (German: ).
View Article and Find Full Text PDFIn the model plant , the zinc-finger transcription factor KNUCKLES (KNU) plays an important role in the termination of floral meristem activity, a process that is crucial for preventing the overgrowth of flowers. The gene is activated in floral meristems by the floral organ identity factor AGAMOUS (AG), and it has been shown that both AG and KNU act in floral meristem control by directly repressing the stem cell regulator (), which leads to a loss of stem cell activity. When we re-examined the expression pattern of in floral meristems, we found that is expressed throughout the center of floral meristems, which includes, but is considerably broader than the expression domain.
View Article and Find Full Text PDFA large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through "domestication"-the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was.
View Article and Find Full Text PDFOver the past three decades, several hundred genes with important regulatory functions during reproductive development in angiosperms have been identified. While we do not yet know, in most cases, how these genes and their products act, fundamental insights into the molecular mechanisms underlying the formation of flowers have been obtained in recent years. These advances were made possible to a large extent by studying the functions of master regulators of flower development through a multitude of experimental approaches, ranging from basic genetic analysis to genome-wide surveys.
View Article and Find Full Text PDFTranscription factors are pivotal for the control of development and the response of organisms to changes in the environment. Therefore, a detailed understanding of their functions is of central importance for biology. Over the years, different experimental methods have been developed to study the activities of transcription factors in plants.
View Article and Find Full Text PDFProper floral patterning, including the number and position of floral organs in most plant species, is tightly controlled by the precise regulation of the persistence and size of floral meristems (FMs). In , two known feedback pathways, one composed of WUSCHEL (WUS) and CLAVATA3 (CLV3) and the other composed of AGAMOUS (AG) and WUS, spatially and temporally control floral stem cells, respectively. However, mounting evidence suggests that other factors, including phytohormones, are also involved in floral meristem regulation.
View Article and Find Full Text PDFAs originally proposed by Goethe in 1790, floral organs are derived from leaf-like structures. The conversion of leaves into different types of floral organ is mediated by floral homeotic proteins, which, as described by the ABCE model of flower development, act in a combinatorial manner. However, how these transcription factors bring about this transformation process is not well understood.
View Article and Find Full Text PDFCovalent histone modifications and their effects on chromatin state and accessibility play a key role in the regulation of gene expression in eukaryotes. To gain insights into their functions during plant growth and development, the distribution of histone modifications can be analyzed at a genome-wide scale through chromatin immunoprecipitation assays followed by sequencing of the isolated genomic DNA. Here, we present a protocol for systematic analysis of the distribution and dynamic changes of selected histone modifications, during flower development in the model plant Arabidopsis thaliana.
View Article and Find Full Text PDFThe gene regulatory network comprised of LEAFY (LFY), APETALA1 (AP1), the AP1 paralog CAULIFLOWER (CAL), and TERMINAL FLOWER1 (TFL1) is a major determinant of the flowering process in Arabidopsis thaliana. TFL1 activity in the shoot apical meristem provides inflorescence identity while the transcription factors LFY and AP1/CAL confer floral identity to emerging floral primordia. It has been thought that LFY and AP1/CAL control the onset of flowering in part by repressing TFL1 expression in flowers.
View Article and Find Full Text PDFAssessing molecular changes that occur through altering a gene's activity is often hampered by difficulties that arise due to the typically static nature of the introduced perturbation. This is especially problematic when investigating molecular events at specific stages and/or in certain tissues or organs during Arabidopsis development. To circumvent these issues, we have employed chemically inducible artificial microRNAs (amiRNAs) for the specific knockdown of developmental regulators.
View Article and Find Full Text PDFThe transcription factors LEAFY (LFY) and APETALA1 (AP1), together with the AP1 paralog CAULIFLOWER (CAL), control the onset of flower development in a partially redundant manner. This redundancy is thought to be mediated, at least in part, through the regulation of a shared set of target genes. However, whether these genes are independently or cooperatively regulated by LFY and AP1/CAL is currently unknown.
View Article and Find Full Text PDFThe use of new experimental approaches enhances the understanding of floral organogenesis.
View Article and Find Full Text PDFTo efficiently counteract pathogens, plants rely on a complex set of immune responses that are tightly regulated to allow the timely activation, appropriate duration and adequate amplitude of defense programs. The coordination of the plant immune response is known to require the activity of the ubiquitin/proteasome system, which controls the stability of proteins in eukaryotes. Here, we demonstrate that the N-end rule pathway, a subset of the ubiquitin/proteasome system, regulates the defense against a wide range of bacterial and fungal pathogens in the model plant Arabidopsis thaliana.
View Article and Find Full Text PDFThe historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana Here, we investigated whether plant hourglass patterns are also found postembryonically.
View Article and Find Full Text PDFThe genetic and molecular mechanisms that underlie the formation of angiosperm flowers have been studied extensively for nearly three decades. This work has led to detailed insights into the gene regulatory networks that control this vital developmental process in plants. Here, we review some of the key findings in the field of flower development and discuss open questions that must be addressed in order to obtain a more comprehensive understanding of flower formation.
View Article and Find Full Text PDFBackground: The formation of flowers is one of the main model systems to elucidate the molecular mechanisms that control developmental processes in plants. Although several studies have explored gene expression during flower development in the model plant Arabidopsis thaliana on a genome-wide scale, a continuous series of expression data from the earliest floral stages until maturation has been lacking. Here, we used a floral induction system to close this information gap and to generate a reference dataset for stage-specific gene expression during flower formation.
View Article and Find Full Text PDFUnderstanding how flowers develop from undifferentiated stem cells has occupied developmental biologists for decades. Key to unraveling this process is a detailed knowledge of the global regulatory hierarchies that control developmental transitions, cell differentiation and organ growth. These hierarchies may be deduced from gene perturbation experiments, which determine the effects on gene expression after specific disruption of a regulatory gene.
View Article and Find Full Text PDFThe glucocorticoid receptor-dependent activation of plant transcription factors has proven to be a powerful tool for the identification of their direct target genes. In the absence of the synthetic steroid hormone dexamethasone (dex), transcription factors fused to the hormone-binding domain of the glucocorticoid receptor (TF-GR) are held in an inactive state, due to their cytoplasmic localization. This requires physical interaction with the heat shock protein 90 (HSP90) complex.
View Article and Find Full Text PDF