Publications by authors named "Weller H"

Locomotion in water and on land impose dramatically different demands, yet many animals successfully move in both environments. Most turtle species perform both aquatic and terrestrial locomotion but vary in how they use their limbs. Freshwater turtles use anteroposterior movements of the limbs during walking and swimming with contralateral fore- and hindlimbs moving in synchrony.

View Article and Find Full Text PDF

In recent years, the anisotropic semiconductor nanoplatelets (NPLs) gained interest due to their unique optical properties, which depend primarily on their thickness. However, the formation mechanism behind the zinc blende CdSe NPLs remains unclear. Several theories were presented and discussed, but a concrete mechanism has not yet been found with evidence.

View Article and Find Full Text PDF

Digital medical devices (DMDs) present unique opportunities in their regulation and reimbursement. A dynamic landscape of DMD assessment frameworks is emerging within the European Union, with five clusters of prevailing approaches identified. Despite notable gaps in maturity levels, cross-country learning effects are becoming prevalent.

View Article and Find Full Text PDF

Recent advancements in flexible electronics have highlighted their potential in biomedical applications, primarily due to their human-friendly nature. This study introduces a new flexible electronic system designed for motion sensing in a biomimetic three-dimensional (3D) environment. The system features a self-healing gel matrix (chitosan-based hydrogel) that effectively mimics the dynamics of the extracellular matrix (ECM), and is integrated with a highly sensitive thin-film resistive strain sensor, which is fabricated by incorporating a cross-linked gold nanoparticle (GNP) thin film as the active conductive layer onto a biocompatible microphase-separated polyurethane (PU) substrate through a clean, rapid, and high-precision contact printing method.

View Article and Find Full Text PDF

Ultraviolet (UV) colour patterns invisible to humans are widespread in nature. However, research bias favouring species with conspicuous colours under sexual selection can limit our assessment of other ecological drivers of UV colour, like interactions between predators and prey. Here we demonstrate widespread UV colouration across Western Hemisphere snakes and find stronger support for a predator defence function than for reproduction.

View Article and Find Full Text PDF

In the past two decades, the application of colloidal semiconductor-metal nanoparticles (NPs) as photocatalysts for the hydrogen generation from water has been extensively studied. The present body of literature studies agrees that the photocatalytic yield strongly depends on the electron donating agent (EDA) added for scavenging the photogenerated holes. The highest reported hydrogen production rates are obtained in the presence of ionic EDAs and at high pH.

View Article and Find Full Text PDF

In this work, we present the solid-state structures of solvent-free Ga[pf] and In[pf] salts ([pf]=[Al(OR)]; R=C(CF)), which are very rare examples of salts with truly 'naked' metal cations. Both salts may serve as starting materials for subvalent gallium and indium chemistry with very weakly coordinating ligands providing the freedom of choice for solvents and ligands for the future. On the other hand, we report and rationalize the formation and isolation of [M(OEt)][pf] and [M(MeCN)][pf] (M=Ga, In), underlining the surprising stability of these subvalent group 13 M ions against disproportionation.

View Article and Find Full Text PDF

Colour pattern variation provides biological information in fields ranging from disease ecology to speciation dynamics. Comparing colour pattern geometries across images requires colour segmentation, where pixels in an image are assigned to one of a set of colour classes shared by all images. Manual methods for colour segmentation are slow and subjective, while automated methods can struggle with high technical variation in aggregate image sets.

View Article and Find Full Text PDF

The ability to recognize others is a frequent assumption of models of the evolution of cooperation. At the same time, cooperative behavior has been proposed as a selective agent favoring the evolution of individual recognition abilities. Although theory predicts that recognition and cooperation may co-evolve, data linking recognition abilities and cooperative behavior with evidence of selection are elusive.

View Article and Find Full Text PDF

Background: Per- and polyfluoroalkyl substances (PFAS) are biopersistent, global pollutants. Although some and epidemiological studies have explored the neurotoxic potential of perfluorooctane sulfonate (PFOS), a prevalent PFAS congener, it is unknown how developmental PFOS exposure affects neuronal signaling, microglia development, and microglial-neuron communication.

Objectives: We sought to determine the extent to which PFOS exposure disrupts brain health, neuronal activity, and microglia-neuron communication during development.

View Article and Find Full Text PDF

Wearable flexible strain sensors with spatial resolution enable the acquisition and analysis of complex actions for noninvasive personalized healthcare applications. To provide secure contact with skin and to avoid environmental pollution after usage, sensors with biocompatibility and biodegradability are highly desirable. Herein, wearable flexible strain sensors composed of crosslinked gold nanoparticle (GNP) thin films as the active conductive layer and transparent biodegradable polyurethane (PU) films as the flexible substrate are developed.

View Article and Find Full Text PDF

We demonstrate that oleyl phosphate ligand-stabilized iron oxide nanocubes as building blocks can be assembled into 2D supercrystalline mono- and multilayers on flat YSZ substrates within a few minutes using a simple spin-coating process. As a bottom-up process, the growth takes place in a layer-by-layer mode and therefore by tuning the spin-coating parameters, the exact number of deposited monolayers can be controlled. Furthermore, scanning electron and atomic force microscopy as well as X-ray reflectivity measurements give evidence that the choice of solvent allows the control of the lattice type of the final supercrystalline monolayers.

View Article and Find Full Text PDF

In the syntheses of ternary I-III-VI compounds, such as CuInS, it is often difficult to balance three precursor reactivities to achieve the desired size, shape, and atomic composition of nanocrystals. Cation exchange reactions offer an attractive two-step alternative, by producing a binary compound with the desired morphology and incorporating another atomic species postsynthetically. However, the kinetics of such cation exchange reactions, especially for anisotropic nanocrystals, are still not fully understood.

View Article and Find Full Text PDF

Syntheses and characterization of two salts [(L)GaGa(L)][] ([] = [Al(OR)]; R = C(CF)) are reported. They include the first dicationic digallene [(L)Ga⇆Ga(L)] (L = CDP = C(PPh)) and a digallane [(L)Ga-Ga(L)] (L = [NacNac]). The CDP-supported digallene dication includes a -bent [L-GaGa-L] bond that is analogous to neutral R-GaGa-R molecules and related to Robinson's famous "Digallyne" [R-GaGa-R].

View Article and Find Full Text PDF

With the development of X-ray free-electron lasers (XFELs), producing pulses of femtosecond durations comparable with the coherence times of X-ray fluorescence, it has become possible to observe intensity-intensity correlations due to the interference of emission from independent atoms. This has been used to compare durations of X-ray pulses and to measure the size of a focusedX-ray beam, for example. Here it is shown that it is also possible to observe the interference of fluorescence photons through the measurement of the speckle contrast of angle-resolved fluorescence patterns.

View Article and Find Full Text PDF

Assessment of compound permeability through a Caco-2 cell monolayer is a well-accepted model to evaluate its permeability potential and transporter interaction. While this assay has commonly been conducted using a 24-well assay plate format, a miniaturised 96-well assay format is highly desirable to achieve greater capacity and higher efficiency.Previous attempts to convert this assay from 24-well to 96-well format at our lab, however, had met with varied efflux capacities and unacceptable efflux ratios for digoxin, a substrate of P-glycoprotein (Pgp), which indicated inadequate Pgp transporter expression in the 96-well format.

View Article and Find Full Text PDF

Though Pr doped LiYF (LiYF:Pr) bulk crystals are a well-known laser gain material with several radiative transitions, their nanocrystal counterparts have not been investigated with regards to these. Through downsizing to the nanoscale, novel applications are expected, especially in composite photonic devices. For example, nanocrystals in stable colloidal form with narrow size distribution are highly desirable to reduce scattering in such composites.

View Article and Find Full Text PDF

Yttrium oxide (YO) is considered as one of the best host lattices for europium (Eu) based red emitting phosphors because of its unit cell and good photo-saturation properties. As a bulk material, it reaches nearly 100% quantum yield. However, providing high quality nanosized materials for the LED industry is still a challenge and not easily accomplished.

View Article and Find Full Text PDF

Nanocrystal assembly into ordered structures provides mesostructural functional materials with a precise control that starts at the atomic scale. However, the lack of understanding on the self-assembly itself plus the poor structural integrity of the resulting supercrystalline materials still limits their application into engineered materials and devices. Surface functionalization of the nanobuilding blocks with organic ligands can be used not only as a means to control the interparticle interactions during self-assembly but also as a reactive platform to further strengthen the final material via ligand cross-linking.

View Article and Find Full Text PDF

AbstractMultifunctionality is often framed as a core constraint of evolution, yet many evolutionary transitions involve traits taking on additional functions. Mouthbrooding, a form of parental care where offspring develop inside a parent's mouth, increases multifunctionality by adding a major function (reproduction) to a structure already serving other vital functions (feeding and respiration). Despite increasing multifunctionality, mouthbrooding has evolved repeatedly from other forms of parental care in at least seven fish families.

View Article and Find Full Text PDF

Differential cross sections for Compton scattering from the proton have been measured at scattering angles of 55°, 90°, and 125° in the laboratory frame using quasimonoenergetic linearly (circularly) polarized photon beams with a weighted mean energy value of 83.4 MeV (81.3 MeV).

View Article and Find Full Text PDF

The evolution of constriction and of large prey ingestion within snakes are key innovations that may explain the remarkable diversity, distribution and ecological scope of this clade, relative to other elongate vertebrates. However, these behaviors may have simultaneously hindered lung ventilation such that early snakes may have had to circumvent these mechanical constraints before those behaviors could evolve. Here, we demonstrate that Boa constrictor can modulate which specific segments of ribs are used to ventilate the lung in response to physically hindered body wall motions.

View Article and Find Full Text PDF

In recent years, successful assay miniaturization has enabled the exploration of synthesis scale reduction in pharmaceutical discovery. Miniaturization of pharmaceutical synthesis and purification allows a reduction in material consumption and shortens timelines, which ultimately reduces the cost per experiment without compromising data quality. Isolating and purifying the compounds of interest is a key step in the library synthesis process.

View Article and Find Full Text PDF

This work presents a facile one-step protocol for the gram-scale synthesis of iron oxide nanocubes with adjustable sizes ranging from 13 to 20 nm and with size distributions between 7 and 12%. As X-ray diffraction indicated the initial formation of the wüstite phase, a formation mechanism of the nanocubes based on the wüstite crystal structure is proposed. When exposed to ambient conditions, the nanoparticles rapidly oxidize to magnetite/maghemite with a remaining wüstite core.

View Article and Find Full Text PDF