Publications by authors named "Welcsh P"

Objective: Conduct a needs assessment to explore the experiences, barriers, and needs of genetic counselors (GCs), who counsel and refer young and metastatic breast cancer (BC) patients to support services, in order to develop resources to address any noticeable gaps.

Methods: GCs providing care to BC patients were eligible to complete the survey. Support services were defined as resources to address patient-centered healthcare, emotional, and quality-of-life needs.

View Article and Find Full Text PDF

Werner syndrome (WS) is the canonical adult human progeroid ('premature aging') syndrome. Patients with this autosomal recessive Mendelian disorder display constitutional genomic instability and an elevated risk of important age-associated diseases including cancer. Remarkably few analyses of WS patient tissue and tumors have been performed to provide insight into WS disease pathogenesis or the high risk of neoplasia.

View Article and Find Full Text PDF

Functional studies of the roles that DNA helicases play in human cells have benefited immensely from DNA fiber (or single molecule) technologies, which enable us to discern minute differences in behaviors of individual replication forks in genomic DNA in vivo. DNA fiber technologies are a group of methods that use different approaches to unravel and stretch genomic DNA to its contour length, and display it on a glass surface in order to immuno-stain nucleoside analog incorporation into DNA to reveal tracks (or tracts) of replication. We have previously adopted a microfluidic approach to DNA stretching and used it to analyze DNA replication.

View Article and Find Full Text PDF

Purpose: WRN promoter CpG island hypermethylation in colorectal cancer has been reported to increase sensitivity to irinotecan-based therapies. We aimed to characterize methylation of the WRN promoter, determine the effect of WRN promoter hypermethylation upon expression, and validate a previous report that WRN promoter hypermethylation predicts improved outcomes for patients with metastatic colorectal cancer (mCRC) treated with irinotecan-based therapy.

Experimental Design: WRN methylation status was assessed using methylation-specific PCR and bisulfite sequencing assays.

View Article and Find Full Text PDF

Deregulation of DNA repair enzymes occurs in cancers and may create a susceptibility to chemotherapy. Expression levels of DNA repair enzymes have been shown to predict the responsiveness of cancers to certain chemotherapeutic agents. The RECQ helicases repair damaged DNA including damage caused by topoisomerase I inhibitors, such as irinotecan.

View Article and Find Full Text PDF

Objectives: 53BP1, a critical mediator of the DNA damage response, functions by regulating the balance between homologous recombination (HR) and the more error-prone non-homologous endjoining (NHEJ). Deletion of 53BP1 in brca1 (but not brca2) null cells partially restores HR and reverses sensitivity to poly-ADP-ribose polymerase inhibitors (PARPi). We characterized 53BP1 and BRCA1 expression and their association with clinical outcomes in sporadic and inherited ovarian carcinomas.

View Article and Find Full Text PDF

Objectives: Forty percent of women with ovarian carcinoma have circulating free neoplastic DNA identified in plasma. Angiogenesis is critical in neoplastic growth and metastasis. We sought to determine whether circulating neoplastic DNA results from alterations in the balance of angiogenesis activators and inhibitors.

View Article and Find Full Text PDF

We have previously shown that the E2F3 oncogene is up-regulated as part of a "preneoplastic expression profile" in fallopian tube epithelium (FTE) of women with BRCA1 mutations. We studied E2F3 expression in FTE and carcinomas of women with BRCA1 or BRCA2 mutations or wildtype for both genes. Significantly more foci of TP53 positive cells in histologically normal FTE from women with BRCA1 mutations but not in wildtype or BRCA2 mutated individuals had E2F3 protein overexpression relative to adjacent normal FTE, which occurred in the context of focally increased proliferation, potentially explaining the increased neoplastic potential of tubal TP53 foci in women with BRCA1 mutations.

View Article and Find Full Text PDF

Cancer arises as the consequence of mutations and epigenetic alterations that activate oncogenes and inactivate tumor suppressor genes. Through a genome-wide screen for methylated genes in colon neoplasms, we identified aberrantly methylated RET in colorectal cancer. RET, a transmembrane receptor tyrosine kinase and a receptor for the glial cell-derived neurotrophic factor family ligands, was one of the first oncogenes to be identified, and has been shown to be an oncogene in thyroid cancer and pheochromocytoma.

View Article and Find Full Text PDF

Alu-mediated rearrangement of tumor suppressor genes occurs frequently during carcinogenesis. In breast cancer, this mechanism contributes to loss of the wild-type BRCA1 allele in inherited disease and to loss of heterozygosity in sporadic cancer. To identify genes required for suppression of Alu-mediated recombination we performed a genomewide screen of a collection of 4672 yeast gene deletion mutants using a direct repeat recombination assay.

View Article and Find Full Text PDF

Background: Random monoallelic expression contributes to phenotypic variation of cells and organisms. However, the epigenetic mechanisms by which individual alleles are randomly selected for expression are not known. Taking cues from chromatin signatures at imprinted gene loci such as the insulin-like growth factor 2 gene 2 (IGF2), we evaluated the contribution of CTCF, a zinc finger protein required for parent-of-origin-specific expression of the IGF2 gene, as well as a role for allele-specific association with DNA methylation, histone modification and RNA polymerase II.

View Article and Find Full Text PDF

Microinvasive carcinomas and high-grade intraepithelial neoplasms are commonly discovered within the fallopian tube of BRCA1 mutation carriers at the time of risk-reducing salpingo-oophorectomy, suggesting that many BRCA1-mutated ovarian carcinomas originate in tubal epithelium. We hypothesized that changes in gene expression profiles within the histologically normal fallopian tube epithelium of BRCA1 mutation carriers would overlap with the expression profiles in BRCA1-mutated ovarian carcinomas and represent a BRCA1 preneoplastic signature. Laser capture microdissection of frozen sections was used to isolate neoplastic cells or histologically normal fallopian tube epithelium, and expression profiles were generated on Affymetrix U133 Plus 2.

View Article and Find Full Text PDF

Background: DNA repair genes critically regulate the cellular response to chemotherapy and epigenetic regulation of these genes may be influenced by chemotherapy exposure. Restoration of BRCA1 and BRCA2 mediates resistance to platinum chemotherapy in recurrent BRCA1 and BRCA2 mutated hereditary ovarian carcinomas. We evaluated BRCA1, BRCA2, and MLH1 protein expression in 115 sporadic primary ovarian carcinomas, of which 31 had paired recurrent neoplasms collected after chemotherapy.

View Article and Find Full Text PDF

Cohesin is required to prevent premature dissociation of sister chromatids after DNA replication. Although its role in chromatid cohesion is well established, the functional significance of cohesin's association with interphase chromatin is not clear. Using a quantitative proteomics approach, we show that the STAG1 (Scc3/SA1) subunit of cohesin interacts with the CCTC-binding factor CTCF bound to the c-myc insulator element.

View Article and Find Full Text PDF

The breast and ovarian cancer susceptibility gene BRCA1 plays a major role in the DNA damage response pathway. The lack of well-characterized human BRCA1-null cell lines has limited the investigation of BRCA1 function, particularly with regard to its role in ovarian cancer. We propagated a novel BRCA1-null human ovarian cancer cell line UWB1.

View Article and Find Full Text PDF

Functional and genomic approaches can be integrated to screen efficiently for pathogenic alleles in founder populations. We applied such approaches to analysis of the cancer-associated cell cycle regulator CHEK2 in the Ashkenazi Jewish population. We first identified two extended haplotypes at CHEK2 that co-segregated with breast cancer in high-risk families.

View Article and Find Full Text PDF

The Werner syndrome protein, WRN, is a member of the RecQ family of DNA helicases. It possesses both 3'-->5' DNA helicase and 3'-->5' DNA exonuclease activities. Mutations in WRN are causally associated with a rare, recessive disorder, Werner syndrome (WS), distinguished by premature aging and genomic instability; all are reported to result in loss of protein expression.

View Article and Find Full Text PDF

A previously uncharacterized gene, DBC2 (deleted in breast cancer), was cloned from a homozygously deleted region at human chromosome 8p21. DBC2 contains a highly conserved RAS domain and two putative protein interacting domains. Our analyses indicate that DBC2 is the best candidate tumor suppressor gene from this region.

View Article and Find Full Text PDF

Loss of function of BRCA1 caused by inherited mutation and tissue-specific somatic mutation leads to breast and ovarian cancer. Nearly all BRCA1 germ-line mutations involve truncation or loss of the C-terminal BRCT transcriptional activation domain, suggesting that transcriptional regulation is a critical function of the wild-type gene. The purpose of this project was to determine whether there is a link between the role of BRCA1 in transcriptional regulation and its role in tumor suppression.

View Article and Find Full Text PDF

Germline mutations in the tumor suppressor genes BRCA1 and BRCA2 predispose individuals to breast and ovarian cancers. Progress in determining the function of BRCA1 and BRCA2 suggests that they are involved in two fundamental cellular processes: DNA damage repair and transcriptional regulation. We evaluate current knowledge of BRCA1 and BRCA2 functions to explain why mutations in BRCA1 and BRCA2 lead specifically to breast and ovarian cancer.

View Article and Find Full Text PDF

Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an "inverse genomics" approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression.

View Article and Find Full Text PDF

Since BRCA1 and BRCA2 were cloned five years ago, unraveling their normal functions has posed fascinating problems for cancer biologists. Both genes are novel, and little of their normal function was revealed by their sequence. Both genes contribute to homologous recombination and DNA repair, to embryonic proliferation, to transcriptional regulation and, for BRCA1, to ubiquitination.

View Article and Find Full Text PDF

A role for BRCA1 and BRCA2 in the control of genome integrity easily fits a tumor suppressor model. It is well established that mutations in DNA repair genes lead to genomic instability (138). Genomic instability may directly lead to tumorigenesis by allowing for the accumulation of mutations in key cell cycle regulators (139).

View Article and Find Full Text PDF