V-set and immunoglobulin domain-containing 4 (VSIG4) is a complement receptor of the immunoglobulin superfamily that is specifically expressed on tissue resident macrophages, and its many reported functions and binding partners suggest a complex role in immune function. VSIG4 is reported to have a role in immune surveillance as well as in modulating diverse disease phenotypes such as infections, autoimmune conditions, and cancer. However, the mechanism(s) governing VSIG4's complex, context-dependent role in immune regulation remains elusive.
View Article and Find Full Text PDFAlthough many patients with diffuse large B cell lymphoma (DLBCL) may achieve a complete response to frontline chemoimmunotherapy, patients with relapsed/refractory disease typically have poor outcomes. Odronextamab, a CD20xCD3 bispecific antibody that provides "signal 1" through the activation of the T cell receptor/CD3 complex, has exhibited early, promising activity for patients with highly refractory DLBCL in phase 1 trials. However, not all patients achieve complete responses, and many relapse, thus representing a high unmet medical need.
View Article and Find Full Text PDFAlthough radiotherapy has been used for over a century to locally control tumor growth, alone it rarely induces an abscopal response or systemic antitumor immunity capable of inhibiting distal tumors outside of the irradiation field. Results from recent studies suggest that combining immune checkpoint blockades to radiotherapy may enhance abscopal activity. However, the treatment conditions and underlying immune mechanisms that consistently drive an abscopal response during radiation therapy combinations remain unknown.
View Article and Find Full Text PDFDuring primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization.
View Article and Find Full Text PDFIt is now clear that anti-CTLA-4 (α-CTLA-4) antibodies stimulate tumor immunity either by relieving inhibition of effector T-cell function or by depletion of regulatory T cells (Treg). Several recent reports, however, have suggested that these antibodies may deliver a "go" signal to effector T cells, thus interrupting T-cell receptor signaling and subsequent T-cell activation. We examined the behavior of melanoma-specific CD8+ pmel-1 T cells in the B16/BL6 mouse model using intravital microscopy.
View Article and Find Full Text PDFTreatment with monoclonal antibody specific for cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti-CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions.
View Article and Find Full Text PDF