Publications by authors named "Wejrzanowski T"

Within this study, a methodology for the numerical simulation of droplet freezing, including a micrometer texturized pattern, was developed. The finite volume method was then applied to simulate the behavior of water droplets. The procedure was divided into two processes: stabilization and freezing.

View Article and Find Full Text PDF

This article presents the results of petrophysical analyses of limestones and sandstones used for the construction of the wall structures of a Roman rural settlement located in Podšilo Bay on Rab Island (Croatia). An on-site analysis of the walls indicated the use of different lithotypes, which is an uncommon case in the area. So far, no petrophysical properties of the applied materials have been tested, and their provenance has not been specified.

View Article and Find Full Text PDF

In the field of soil drying methods, rapid microwave heating is progressively replacing conventional techniques. Due to the specific heat transport caused by microwaves, the drying process can significantly modify soil structure, which, in turn, can influence mechanical and filtration characteristics. In this study, we compared structural changes of exemplary non-cohesive (medium quartz sand (MSa)) and cohesive soil (silty clay mainly composed of kaolinite (siCl)).

View Article and Find Full Text PDF

High-temperature fuel cells (namely, molten carbonate and solid oxide; MCFCs and SOFCs) require the cathode to be designed to maximize oxygen catalytic reduction, oxygen ion transport, electrical conductivity, and gas transport. This then leads to the optimization of the volume fraction and morphology of phases, as they are a pathway for electrons, ions, and gases to be continuous and self-interpenetrating. Apart from the functional properties, the cathode must be mechanically stable to prevent cracking during fuel cell assembly and operation.

View Article and Find Full Text PDF

Within these studies, the effect of surface topography for hydrophobic coatings was studied both numerically and experimentally. Chemically modified polyurethane coating was patterned by application of a laser beam. A set of patterns with variously distant linear peaks and grooves was obtained.

View Article and Find Full Text PDF

Catalysis has been a key way of improving the efficiency-to-cost ratio of chemical and electrochemical processes. There have been recent developments in catalyst materials that enable the development of novel and more sophisticated devices that, for example, can be used in applications, such as membranes, batteries or fuel cells. Since catalytic reactions occur on the surface, most catalyst materials are based on open porous structures, which facilitates the transport of fluids (gas or liquid) and chemical (or electrochemical) specific surface activity, thus determining the overall efficiency of the device.

View Article and Find Full Text PDF

Within these studies the piezoresistive effect was analyzed for 6H-SiC and 4H-SiC material doped with various elements: N, B, and Sc. Bulk SiC crystals with a specific concentration of dopants were fabricated by the Physical Vapor Transport (PVT) technique. For such materials, the structures and properties were analyzed using X-ray diffraction, SEM, and Hall measurements.

View Article and Find Full Text PDF

This study addresses the influence of pore size variation on the effective thermal conductivity of open-cell foam structures. Numerical design procedure which renders it possible to control chosen structural parameters has been developed based on characterization of commercially available open-cell copper foams. Open-porous materials with various pore size distribution were numerically designed using the Laguerre-Voronoi Tessellations procedure.

View Article and Find Full Text PDF

Imaging of the surface of materials by atomic force microscopy under tapping and phase imaging mode, with use of modified probes is addressed. In this study, the circularly shaped holes located in varying distance from the probe base, were cut out by focused ion beam. Such modification was a consequence of the results of the previous experiments (probe tip sharpening and cantilever thinning) where significant improvement of image quality in tapping and phase imaging mode has been revealed.

View Article and Find Full Text PDF

Intrinsically hydrophobic rare-earth oxides (REOs) have emerged as a robust class of ceramics for a variety of applications. Recently, the hydrophobicity of REOs has been observed experimentally and subsequently scrutinized using electronic structure density functional theory (DFT) calculations. In this work, we applied the DFT method to analyze the possibility of tuning the wettability of commonly used hydrophilic AlO and TiO by surface doping with Ce.

View Article and Find Full Text PDF

This study concerns imaging of the structure of materials using AFM tapping (TM) and phase imaging (PI) mode, using probes modified with focused ion beam (FIB). Three kinds of modifications were applied - thinning of the cantilever, sharpening of the tip and combination of these two modifications. Probes shaped in that way were used for AFM investigations with Bruker AFM Nanoscope 8.

View Article and Find Full Text PDF

We present a method of fabricating Ge-doped SiO2 fibers with corrugations around their full circumference for a desired length in the longitudinal direction. The procedure comprises three steps: hydrogenation of Ge-doped SiO2 fibers to increase photosensitivity, recording of Bragg gratings with ultraviolet light to achieve modulation of refractive index, and chemical etching. Finite-length, radially corrugated fibers may be used as couplers.

View Article and Find Full Text PDF