Publications by authors named "Weizhong Hua"

Objective: Investigating whether mechanosensitive lncRNA H19 can directly target miR-148a to alleviate cartilage damage in post-traumatic osteoarthritis (PTOA).

Methods: Thirty-two female rats were randomly divided into four groups: Sham-operated group (Sham group, n = 8), treadmill running group (R group, n = 8), anterior cruciate ligament transection (ACLT) group (ACLT group, n = 8), and ACLT + treadmill running group (ACLT + R group, n = 8). Histological evaluation was performed to observe the pathological changes in the cartilage of the rat knee.

View Article and Find Full Text PDF

Ferroptosis is a new iron-dependent programmed cell death process that is directly mediated by the accumulation of lipid peroxides and reactive oxygen species. Numerous studies have shown that ferroptosis is important in regulating the occurrence and development of bone-related diseases, but the underlying mechanisms are not completely clear. Herein, we review the progress of the mechanism of ferroptosis in bone marrow injury, osteoporosis, osteoarthritis, and osteosarcoma and attempt to deeply understand the regulatory targets of ferroptosis, which will open up a new way for the prevention and treatment of orthopedic diseases.

View Article and Find Full Text PDF

The repair of critical bone defects is a hotspot of orthopedic research. With the development of bone tissue engineering (BTE), there is increasing evidence showing that the combined application of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes, with hydrogels, scaffolds, and other bioactive materials has made great progress, exhibiting a good potential for bone regeneration. Recent studies have found that miRNAs, proteins, and other cargo loaded in EVs are key factors in promoting osteogenesis and angiogenesis.

View Article and Find Full Text PDF

Rotator cuff injury is a common upper extremity musculoskeletal disease that may lead to persistent pain and functional impairment. Despite the clinical outcomes of the surgical procedures being satisfactory, the repair of the rotator cuff remains problematic, such as through failure of healing, adhesion formation, and fatty infiltration. Stem cells have high proliferation, strong paracrine action, and multiple differentiation potential, which promote tendon remodeling and fibrocartilage formation and increase biomechanical strength.

View Article and Find Full Text PDF