Wind environment is important in architectural sustainable design, as existing studies show that it can be considerably influenced by building morphologies. This study aimed to develop a data-mining framework to quantitatively evaluate and compare influences on Low-Wind-Velocity Area (LWVA) of common cuboid-form buildings with typical morphological parameters. The data-mining framework was originally developed by integrating multiple computational methods for rapid in-depth iterative analyses, including the generation of building models using parametric modelling, the big data generation based on hybrid model, and the statistical metric analysis method.
View Article and Find Full Text PDF