In the rapidly evolving field of deep learning, Convolutional Neural Networks (CNNs) retain their unique strengths and applicability in processing grid-structured data such as images, despite the surge of Transformer architectures. This paper explores alternatives to the standard convolution, with the objective of augmenting its feature extraction prowess while maintaining a similar parameter count. We propose innovative solutions targeting depthwise separable convolution and standard convolution, culminating in our Multi-scale Progressive Inference Convolution (MPIC).
View Article and Find Full Text PDFImage inpainting has made remarkable progress with recent advances in deep learning. Popular networks mainly follow an encoder-decoder architecture (sometimes with skip connections) and possess sufficiently large receptive field, i.e.
View Article and Find Full Text PDFIEEE Trans Image Process
May 2021
We present a novel and efficient approach to estimate 6D object poses of known objects in complex scenes represented by point clouds. Our approach is based on the well-known point pair feature (PPF) matching, which utilizes self-similar point pairs to compute potential matches and thereby cast votes for the object pose by a voting scheme. The main contribution of this paper is to present an improved PPF-based recognition framework, especially a new center voting strategy based on the relative geometric relationship between the object center and point pair features.
View Article and Find Full Text PDF