Background: Klebsiella pneumoniae is widely distributed in water and plays a major role in both human and poultry infections. Many K. pneumoniae strains form biofilms on various surfaces, enhancing their pathogenicity and resistance to antibiotics.
View Article and Find Full Text PDFOsteoporotic fractures cause major morbidity and mortality in the aging population. Genome-wide association studies (GWAS) have identified USF3 as the novel susceptibility gene of osteoporosis. However, the functional role in bone metabolism and the target gene of the basic helix-loop-helix transcription factor USF3 are unclear.
View Article and Find Full Text PDFUpstream transcription factor family member 3 (USF3) c.3781C>A (rs1026364) in the 3'-untranslated region (3'-UTR) has been firmly associated with bone mineral density (BMD) in genome-wide association study (GWAS). However, the molecular mechanism by which it influences BMD and osteoporosis is unknown.
View Article and Find Full Text PDFPrevious genome-wide linkage and association studies have identified an osteoporosis-associated locus at 1p36 that harbors SNPs rs34920465 and rs6426749. The 1p36 locus also comprises the WNT4 gene with known role in bone metabolism and functionally unknown ZBTB40/lncRNA ZBTB40-IT1 genes. How these might interact to contribute to osteoporosis susceptibility is not known.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2019
Bcl6B, also known as BAZF, plays important roles in the immune response, repression of cancers, and maintenance of spermatogonial stem cells in mammals. In this study, the homologous gene bcl6b and its 5 alternative splicing variants, namely bcl6bX1 to bcl6bX5, were isolated from medaka fish, Oryzias latipes. Medaka bcl6b possesses conserved domains such as BTB domain, RD2 domain and four zinc fingers.
View Article and Find Full Text PDFThe SOST gene encodes sclerostin, a C-terminal cysteine knot-like domain containing key negative regulator of osteoblastic bone formation that inhibits LRP5/6-mediated canonical Wnt signaling. Numerous single nucleotide polymorphisms (SNPs) in the SOST locus are firmly associated with bone mineral density (BMD) and fracture in genome-wide association studies (GWAS) and candidate gene association studies. However, the validation and mechanistic elucidation of causal genetic variants, especially for SNPs located beyond the promoter-proximal region, remain largely unresolved.
View Article and Find Full Text PDFFundc1 is a mitochondrial outer membrane protein and plays important roles in mitochondria fission and hypoxia-induced mitophagy in mammalian cells. However, there is no relevant report of fundc1 in fish. In the present study, we cloned a 942bp fundc1 cDNA from rare minnow.
View Article and Find Full Text PDFObjectives: Genome-wide association studies (GWASs) have revealed many SNPs and genes associated with osteoporosis. However, influence of these SNPs and genes on the predisposition to osteoporosis is not fully understood. We aimed to identify osteoporosis GWASs-associated SNPs potentially influencing the binding affinity of transcription factors and miRNAs, and reveal enrichment signaling pathway and "hub" genes of osteoporosis GWAS-associated genes.
View Article and Find Full Text PDFRNA modification, involving in a wide variety of cellular processes, has been identified over 100 types since 1950s. N(6)-methyladenosine (m6A), as one of the most abundant RNA modifications, is found in several RNA species and predominantly located in the stop codons, long internal exons as well as 3'UTR. It was reported that m6A modification preferentially appears after G in the conserved motif RRm6ACH (R = A/G and H = A/C/U).
View Article and Find Full Text PDFApoptosis, also known as programmed cell death, plays an essential role in eliminating excessive, damaged or harmful cells. Previous work has demonstrated that anticancer drugs induce cell apoptosis by inducing cytotoxicity. In recent years, several reports demonstrated modulated expression of DNA methyltransferases 1 (DNMT1) and acetylcholinesterase (AChE) in a variety of tumors.
View Article and Find Full Text PDFMore than 100 types of RNA modifications have been identified so far, which are involved in a variety of cellular processes. N6-methyladenosine (m6A), as one most abundant RNA modification, is found in several RNA species, and mainly located in the stop codons, long internal exons as well as 3'UTR. It was reported that m6A modification is preferred after G in the conserved sequence RRm6ACH (R = A/G and H = A/C/U).
View Article and Find Full Text PDFIn recent years, widespread antisense transcripts have been identified systematically in mammalian cells and are known to regulate gene expression, although their functional significance remains largely unknown. Previous work has identified that acetylcholinesterase (AChE) is expressed aberrantly in various malignant tumors and function as a tumor growth suppressor. However, the mechanism of AChE gene regulation in tumors remains unclear.
View Article and Find Full Text PDFMiR-132 is enriched in the central nerve system and is thought to be involved in neuronal development, maturation and function, and to be associated with several neurological disorders including Alzheimer's disease. In addition to its documented neuronal functions, an emerging role for miR-132 in tumorigenesis has been suggested. Recently, hsa-miR-132 was shown to be modulated in different tumor types.
View Article and Find Full Text PDFInt J Biochem Cell Biol
February 2013
The apoptosis pathway has been proposed to be involved in causing neuronal cell death in the pathogenesis of Parkinson's disease. However, the details of this pathway are poorly understood. Previous research has shown increased acetylcholinesterase expression during apoptosis in various cell types, which suggests that acetylcholinesterase has a potential role in neuronal cell death.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) is emerging as an important contributor to apoptosis in various cell types. However, overexpression of AChE does not initiate apoptosis, and cells which express AChE at basal levels grow normally, suggesting that AChE may function differently between normal and apoptotic conditions. In this study, we determined that an AChE-derived protein (∼55 kDa) positively correlated with cellular apoptotic levels.
View Article and Find Full Text PDFWe recently reported that the expression of the synaptic form of acetylcholinesterase (AChE) is induced during apoptosis in various cell types in vitro. Here, we provide evidence to confirm that AChE is expressed during ischemia-reperfusion (I/R)-induced apoptosis in vivo. Renal I/R is a major cause of acute renal failure (ARF), resulting in injury and the eventual death of renal cells due to a combination of apoptosis and necrosis.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
November 2009
Acetylcholinesterase (AChE) expression may be induced during apoptosis in various cell types. Here, we used the C-terminal of AChE to screen the human fetal brain library and found that it interacted with Ran-binding protein in the microtubule-organizing center (RanBPM). This interaction was further confirmed by coimmunoprecipitation analysis.
View Article and Find Full Text PDFChem Biol Interact
September 2008
The classical function of acetylcholinesterase (AChE) is to terminate synaptic transmission at cholinergic synapses by rapidly hydrolyzing the neurotransmitter acetylcholine (ACh). Non-classical functions of AChE involve accelerating the assembly of Abeta peptide into amyloid fibrils and participating in haematopoiesis and neurite growth. Although numerous antibodies have been raised against AChE, many researchers have questioned their reliability to identify the AChE in situ, especially with the regard to its non-classical roles.
View Article and Find Full Text PDF