Publications by authors named "Weiyong Shen"

Subretinal fibrosis is a major untreatable cause of poor outcomes in neovascular age-related macular degeneration. Mouse models of subretinal fibrosis all possess a degree of invasiveness and tissue damage not typical of fibrosis progression. This project characterises JR5558 mice as a model to study subretinal fibrosis.

View Article and Find Full Text PDF

The common final pathway to blindness in many forms of retinal degeneration is the death of the light-sensitive primary retinal neurons. However, the normally light-insensitive second- and third-order neurons persist optogenetic gene therapy aims to restore sight by rendering such neurons light-sensitive. Here, we investigate whether bReaChES, a newly described high sensitivity Type I opsin with peak sensitivity to long-wavelength visible light, can restore vision in a murine model of severe early-onset retinal degeneration.

View Article and Find Full Text PDF

The importance of Müller glia for retinal homeostasis suggests that they may have vulnerabilities that lead to retinal disease. Here, we studied the effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health. Immunostaining indicated that murine Müller glia expressed insulin receptor (IR), hexokinase 2 (HK2) and phosphoglycerate dehydrogenase (PHGDH) but very little pyruvate dehydrogenase E1 alpha 1 (PDH-E1α) and lactate dehydrogenase A (LDH-A).

View Article and Find Full Text PDF

Purpose: To describe the novel observation of spontaneously migrating retinal cells from living donor surgical retinal explants that express progenitor cell markers in the absence of exogenous growth factors.

Methods: Surgical retinal explants were harvested from 5 consecutive patients undergoing 23 G pars plana vitrectomy for the management of rhegmatogenous detachment. During surgery, equatorial flap tears were trimmed with the vitreous cutter and aspirated.

View Article and Find Full Text PDF

Photoreceptors, the primary site of phototransduction in the retina, require energy and metabolites to constantly renew their outer segments. They preferentially consume most glucose through aerobic glycolysis despite possessing abundant mitochondria and enzymes for oxidative phosphorylation (OXPHOS). Exactly how photoreceptors balance aerobic glycolysis and mitochondrial OXPHOS to regulate their survival is still unclear.

View Article and Find Full Text PDF

Mitochondrial respiration in mammalian cells not only generates ATP to meet their own energy needs but also couples with biosynthetic pathways to produce metabolites that can be exported to support neighboring cells. However, how defects in mitochondrial respiration influence these biosynthetic and exporting pathways remains poorly understood. Mitochondrial dysfunction in retinal pigment epithelium (RPE) cells is an emerging contributor to the death of their neighboring photoreceptors in degenerative retinal diseases including age-related macular degeneration.

View Article and Find Full Text PDF

The Notch and transforming growth factor-β (TGFβ) signaling pathways are two intracellular mechanisms that control fibrosis in general but whether they play a major role in retinal fibrosis is less clear. Here we study how these two signaling pathways regulate Müller cell-dominated retinal fibrosis and . Human MIO-M1 Müller cells were treated with Notch ligands and TGFβ1, either alone or in combination.

View Article and Find Full Text PDF

Aims/hypothesis: Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME.

View Article and Find Full Text PDF

Dysfunction of retinal glial cells, particularly Müller cells, has been implicated in several retinal diseases. Despite their important contribution to retinal homeostasis, a specific way to differentiate retinal glial cells from human pluripotent stem cells has not yet been described. Here, we report a method to differentiate retinal glial cells from human embryonic stem cells (hESCs) through promoting the Notch signaling pathway.

View Article and Find Full Text PDF

Background: Retinal pigment epithelium (RPE) is known to secrete factors important for retinal homeostasis. How this secretome changes in diabetic eyes treated with anti-vascular endothelial growth factor (VEGF) inhibitors is unclear.

Methods: Diabetic conditions were simulated in vitro using ARPE-19 cell-line culture, with high glucose (25 mM) culture media, and hypoxia was chemically induced using cobalt chloride.

View Article and Find Full Text PDF

The human macula is more susceptible than the peripheral retina to developing blinding conditions such as age-related macular degeneration, diabetic retinopathy. A key difference between them may be the nature of their Müller cells. We found primary cultured Müller cells from macula and peripheral retina display significant morphological and transcriptomic differences.

View Article and Find Full Text PDF

Background And Purpose: Simvastatin is a 3-hydroxy-3-methylglutaryl CoA reductase inhibitor with multiple targets and effects. It protects neurons in the brain, but its protective effects on photoreceptors are unclear. In this study, we evaluated the neuroprotective effect of simvastatin on photoreceptors exposed to stress induced by all-trans-retinal (atRAL).

View Article and Find Full Text PDF

Purpose: Subretinal fibroneovascularization is one of the most common causes of vision loss in neovascular AMD (nAMD). Anti-VEGF therapy effectively inhibits vascular leak and neovascularization but has little effect on fibrosis. This study aimed to identify a combination therapy to concurrently inhibit subretinal neovascularization and prevent fibrosis.

View Article and Find Full Text PDF

Aims/hypothesis: A major feature of diabetic retinopathy is breakdown of the blood-retinal barrier, resulting in macular oedema. We have developed a novel oligonucleotide-based drug, CD5-2, that specifically increases expression of the key junctional protein involved in barrier integrity in endothelial cells, vascular-endothelial-specific cadherin (VE-cadherin). CD5-2 prevents the mRNA silencing by the pro-angiogenic microRNA, miR-27a.

View Article and Find Full Text PDF

Endothelial progenitor cells (EPCs) are a group of rare cells that play an important role in the repair of injured vascular endothelial cells and assist in reperfusion of ischemic tissue. Decreased production and/or loss of function of EPCs are associated with diabetic vasculopathy. The molecular mechanisms by which diabetes impairs EPCs remain unclear.

View Article and Find Full Text PDF

Müller cells are the primary glia in the retina, playing a critical role in retinal homeostasis and retinal pathology. This study evaluated the canonical Wnt signalling pathway and its downstream effects on retinal degeneration in a transgenic mouse model of inducible Müller cell disruption. Increased expression of the LacZ reporter gene in the retina suggested Wnt signalling had been activated after induced Müller cell disruption.

View Article and Find Full Text PDF

De novo serine synthesis plays important roles in normal mitochondrial function and cellular anti-oxidative capacity. It is reported to be mainly activated in glial cells of the central nervous system, but its role in retinal Müller glia remains unclear. In this study, we inhibited de novo serine synthesis using CBR-5884, a specific inhibitor of phosphoglycerate dehydrogenase (PHGDH, a rate limiting enzyme in de novo serine metabolism) in MIO-M1 cells (immortalized human Müller cells) and huPMCs (human primary Müller cells) under mild oxidative stress.

View Article and Find Full Text PDF

Purpose: Retinal iron accumulation is observed in a wide range of retinal degenerative diseases, including AMD. Previous work suggests that Müller glial cells may be important mediators of retinal iron transport, distribution, and regulation. A transgenic model of Müller cell loss recently demonstrated that primary Müller cell ablation leads to blood-retinal barrier leakage and photoreceptor degeneration, and it recapitulates clinical features observed in macular telangiectasia type 2 (MacTel2), a rare human disease that features Müller cell loss.

View Article and Find Full Text PDF

Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal nonvascular cells. We have studied the effects of aflibercept and ranibizumab on human Müller cells and photoreceptors exposed to starvation media containing various concentrations of glucose, with or without CoCl2-induced hypoxia.

View Article and Find Full Text PDF

Vascular changes and photoreceptor degeneration are features of age-related macular degeneration, diabetic retinopathy and macular telangiectasis. We have profiled the differential expression of microRNAs and analysed their target genes in transgenic mice in which induced Müller cell disruption results in photoreceptor degeneration, vascular leak and deep retinal neovascularisation. We identified 9 miRNAs which were differentially expressed during the development of retinal neovascularization and chose miR-200b and its target genes for further study.

View Article and Find Full Text PDF

Chloroquine (CQ) and hydroxychloroquine (HCQ) are widely used to treat malaria and inflammatory diseases, long-term usage of which often causes severe side effects, especially retinopathy. Solute carrier transporters (SLCs) are important proteins responsible for the cellular uptake of endogenous and exogenous substances. Inhibitors competing with transporter substrates for SLCs often results in unfavorable toxicities and unsatisfactory therapeutic outcomes.

View Article and Find Full Text PDF

Aims/hypothesis: Diabetic retinopathy is a serious complication of diabetes mellitus and can lead to blindness. A genetic component, in addition to traditional risk factors, has been well described although strong genetic factors have not yet been identified. Here, we aimed to identify novel genetic risk factors for sight-threatening diabetic retinopathy using a genome-wide association study.

View Article and Find Full Text PDF

Diabetes mellitus is a chronic metabolic disorder that significantly affects human health and well-being. The Solute carrier transporters (SLCs), particularly the Organic anion/cation transporters (Oats/Octs/Octns), Organic anion transporting polypeptides (Oatps) and Oligopeptide transporters (Pepts) are essential membrane proteins responsible for cellular uptake of many endogenous and exogenous substances such as clinically important drugs. They are widely expressed in mammalian key organs especially the kidney and liver, in which they facilitate the influx of various drug molecules, thereby determining their distribution and elimination in body.

View Article and Find Full Text PDF

Dysfunction of Müller cells has been implicated in the pathogenesis of several retinal diseases. In order to understand the potential contribution of Müller cells to retinal disease better, we have developed a transgenic model in which foci of Müller cell ablation can be selectively induced. MicroRNAs (miRNAs), small non-coding RNAs that are involved in post-transcriptional modulation, have critical functions in various biological processes.

View Article and Find Full Text PDF