The cellular and molecular mechanisms via which MK2206, an AKT inhibitor, prevents the activation of AKT in toluene diisocyanate (TDI)‑induced asthma remain unclear. Thus, the present study aimed to evaluate the potential effects of MK2206 on airway AKT activation, inflammation and remodeling in a TDI‑induced mouse model of asthma. A total of 24 BALB/c mice were selected and randomly divided into untreated (AOO), asthma (TDI), MK2206 (TDI + MK2206), and dexamethasone (TDI + DEX) groups.
View Article and Find Full Text PDFAccumulating evidence indicates that thrombin, the major effector of the coagulation cascade, plays an important role in the pathogenesis of asthma. Interestingly, dabigatran, a drug used in clinical anticoagulation, directly inhibits thrombin activity. The aim of this study was to investigate the effects and mechanisms of dabigatran on airway smooth muscle remodeling in vivo and in vitro.
View Article and Find Full Text PDFGraphene is a single layer of carbon atoms with a large surface-to-volume ratio, providing a large capacity gas molecule adsorption and a strong surface sensitivity. Chemical vapor deposition-grown graphene-based NO gas sensors typically have detection limits from 100 parts per billion (ppb) to a few parts per million (ppm), with response times over 1000 s. Numerous methods have been proposed to enhance the NO sensing ability of graphenes.
View Article and Find Full Text PDFSnSe is an anisotropic binary-layered material with rich physics, which could see it used for a variety of potential applications. Here, we investigate the gas-sensing properties of SnSe using first-principles calculations and verify predictions using a gas sensor made of few-layer SnSe grown by chemical vapor deposition. Theoretical simulations indicate that electrons transfer from SnSe to NO, whereas the direction of charge transfer is the opposite for NH.
View Article and Find Full Text PDFPrevious studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice.
View Article and Find Full Text PDFAccumulating studies have revealed that the dopamine D3 receptor (D3R) plays an important role in methamphetamine (METH) addiction. However, the action of D3R on METH-mediated immune response and the underlying mechanism remain unclear. Mast cells (MCs) are currently identified as effector cells in many processes of immune responses, and MC activation is induced by various stimuli such as lipopolysaccharide (LPS).
View Article and Find Full Text PDFPrevious studies have demonstrated that methamphetamine (METH) alter inflammatory and anti-inflammatory cytokine production in the periphery. However, the effect of METH on lipopolysaccharide (LPS)-induced immune responses and its underlying mechanism of action remains unclear. The dopamine D3 receptor (D3R) plays an important role in METH addiction, indicating that the D3R may regulate METH-mediated immune responses.
View Article and Find Full Text PDFThe aim of this study is to investigate airflow motions and associated pollutant distributions in fume hoods. Currently, most exhaust fume hoods are designed to use an airflow induced by a fan at the top to remove pollutants. Ambient fluids are drawn, flowing toward the opening and subsequently turning to the outlet at the roof.
View Article and Find Full Text PDF