J Colloid Interface Sci
February 2025
Passive daytime radiative cooling (PDRC) is a promising approach to address energy, environmental, and safety issues caused by global warming, with high emissivity in a transparent atmospheric window and high reflectivity in the solar spectrum. However, most demonstrations of PDRC rely mainly on complex and expensive spectral selective nanophotonic structures, requiring specialized photonic structures that are both expensive and difficult to obtain. The superiorities of low-cost, abundant resources, renewability, and high value-added biomass resources prompt Gleditsia sinensis polysaccharides (GSP) to be used in thermal emission materials to explore further the characteristics of regulating object temperature within a specific range without any external energy consumption.
View Article and Find Full Text PDFDesign and development of a multifunctional wound dressing with self-healing, adhesive, and antibacterial properties to attain optimal wound closure efficiency are highly desirable in clinical applications. Nevertheless, conventional hydrogels face significant barriers in their mechanical strength, adhesive performance, and antibacterial properties. Herein, a tough hydrogel based on aldehyde-grafted galactomannan was synthesized through radical copolymerization and Schiff base reaction, incorporating hyaluronic acid, acrylamide, and the zwitterionic monomer to create a multi-crosslinked structure.
View Article and Find Full Text PDFInt J Biol Macromol
April 2024
The electrospinning technology has set off a tide and given rise to the attention of a widespread range of research territories, benefiting from the enhancement of nanofibers which made a spurt of progress. Nanofibers, continuously produced via electrospinning technology, have greater specific surface area and higher porosity and play a non-substitutable key role in many fields. Combined with the degradability and compatibility of the natural structure characteristics of polysaccharides, electrospun polysaccharide nanofiber membranes gradually infiltrate into the life field to help filter air contamination particles and water pollutants, treat wounds, keep food fresh, monitor electronic equipment, etc.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2022
Developing fluorine-free superhydrophobic and biodegradable materials for oil/water separation has already become an irresistible trend. In this paper, we designed two biopolymer oil/water separation routes based on cellulose stearoyl ester (CSE), which was obtained via the acylation reaction between dissolving pulp and stearoyl chloride homogeneously. The CSE showed a superhydrophobic property, which could selectively adsorb oil from the oil/water mixture.
View Article and Find Full Text PDFCarbohydr Polym
January 2022
We prepared super-hydrophobic nanocellulose films using a non-toxic octadecylamine/polydopamine system. Octadecylamine, a low surface energy material, was used to provide hydrophobic alkyl long chains. Polydopamine was produced by dopamine under alkaline conditions, creating an adhesive substance, which reinforced the hydrophobic long chains and increased the surface roughness of nanocellulose.
View Article and Find Full Text PDF