Publications by authors named "Weiyang Zhao"

Background: Excitation-contraction (E-C) coupling processes become disrupted in heart failure (HF), resulting in abnormal Ca homeostasis, maladaptive structural and transcriptional remodeling, and cardiac dysfunction. Junctophilin-2 (JP2) is an essential component of the E-C coupling apparatus but becomes site-specifically cleaved by calpain, leading to disruption of E-C coupling, plasmalemmal transverse tubule degeneration, abnormal Ca homeostasis, and HF. However, it is not clear whether preventing site-specific calpain cleavage of JP2 is sufficient to protect the heart against stress-induced pathological cardiac remodeling in vivo.

View Article and Find Full Text PDF

Unlabelled: The acetogen couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy.

View Article and Find Full Text PDF

Mitochondrial dysfunction, characterized by elevated oxidative stress, impaired energy balance, and dysregulated mitochondrial dynamics, is a hallmark of metabolic syndrome (MetS) and its comorbidities. Ferulic acid (FA), a principal phenolic compound found in whole grains, has demonstrated potential in ameliorating oxidative stress and preserving energy homeostasis. However, the influence of FA on mitochondrial health within the context of MetS remains unexplored.

View Article and Find Full Text PDF

Microalgae have gained considerable attention as promising candidates for precision nutrition and dietary regulation due to their versatile metabolic capabilities. This review innovatively applies system metabolic engineering to utilize microalgae for precision nutrition and sustainable diets, encompassing the construction of microalgal cell factories, cell cultivation and practical application of microalgae. Manipulating the metabolic pathways and key metabolites of microalgae through multi-omics analysis and employing advanced metabolic engineering strategies, including ZFNs, TALENs, and the CRISPR/Cas system, enhances the production of valuable bioactive compounds, such as omega-3 fatty acids, antioxidants, and essential amino acids.

View Article and Find Full Text PDF

Enzymatic cleavage of C─F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by spp. The microbial defluorination products were structurally confirmed and showed regiospecificity and stereospecificity, consistent with their formation by enzymatic reactions.

View Article and Find Full Text PDF

Tumor blood vessels are highly leaky in structure and have poor blood perfusion, which hampers infiltration and function of CD8T cells within tumor. Normalizing tumor vessels is thus thought to be important in promoting the flux of immune T cells and enhancing ant-tumor immunity. However, how tumor vasculature is normalized is poorly understood.

View Article and Find Full Text PDF

Total dissolved gas (TDG) supersaturation downstream of dams can occur in the Yangtze River basin and is known to cause stress and even death in fish. Consequently, it is important to establish tolerance thresholds of endemic fish to protect local aquatic resources. We conducted experiments to assess survival characteristics and swimming ability of bighead carp, an important commercial fish dwelling in the Yangtze River, to evaluate its tolerance threshold to TDG supersaturation.

View Article and Find Full Text PDF

As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.

View Article and Find Full Text PDF

Enzymatic cleavage of C-F bonds in per- and polyfluoroalkyl substances (PFAS) is largely unknown but avidly sought to promote systems biology for PFAS bioremediation. Here, we report the reductive defluorination of α, β-unsaturated per- and polyfluorocarboxylic acids by spp. Two critical molecular features in species enabling reductive defluorination are (i) a functional fluoride efflux transporter (CrcB) and (ii) an electron-bifurcating caffeate reduction pathway (CarABCDE).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a group of emerging PFAS called fluoroalkylethers, specifically examining the biodegradable potential of 12 different types in activated sludge systems.
  • It was found that only certain structures with specific chemical features could be broken down effectively, leading to the formation of intermediate substances that could further degrade.
  • The research suggests that this natural biotransformation process could be used alongside advanced treatment methods to enhance the removal of GenX and similar substances, potentially offering a more cost-effective solution for managing these environmental pollutants.
View Article and Find Full Text PDF

Diabetes is a major public health problem due to morbidity and mortality associated with end organ complications. Uptake of fatty acids by Fatty Acid Transport Protein-2 (FATP2) contributes to hyperglycemia, diabetic kidney and liver disease pathogenesis. Because FATP2 structure is unknown, a homology model was constructed, validated by AlphaFold2 prediction and site-directed mutagenesis, and then used to conduct a virtual drug discovery screen.

View Article and Find Full Text PDF

Mass media worldwide has contributed to increasing awareness of the illegal wildlife trade and its significant impact on wildlife conservation. We used mass media coverage as a proxy for macro-level public opinion to analyze the media framing of elephant ivory in 6394 Chinese newspaper articles published from 2000 to 2021 and thus determine the effects of wildlife policies on public opinion. We focused on 2 events: the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) approval of China as a trading partner in the purchase and import of ivory stockpiles from Africa in July 2008 and the Chinese government's announcement of a domestic ivory ban in December 2016.

View Article and Find Full Text PDF

Sustainable cities require spacious infrastructures such as roadways to serve multiple functions, including transportation and water treatment. This can be achieved by installing stormwater control measures (SCM) such as biofilters and swales on the roadside compacted soil, but compacted soil limits infiltration and other functions of SCM. Understanding the effect of compaction on subsurface processes could help design SCM that could alleviate the negative impacts of compaction.

View Article and Find Full Text PDF

Ferulic acid (FA) is one of the most abundant bound phenolics in whole grains, partly contributing to its preventive effects on metabolic syndrome (MetS). The study aims to investigate if FA mediates MetS through the regulation of hepatic metabolisms and the insulin receptor related pathways in the palmitate-treated HepG2 cells (MetS model). We found that FA (50, 100, and 200 μM) dramatically ameliorated the lipid accumulation in the MetS model.

View Article and Find Full Text PDF

Metformin (Met), a first-line drug for type 2 diabetes, lowers blood glucose levels by suppressing gluconeogenesis in the liver, presumably through the liver kinase B1-dependent activation of AMP-activated protein kinase (AMPK) after inhibiting respiratory chain complex I. Met is also implicated as a drug to be repurposed for cancers; its mechanism is believed identical to that of gluconeogenesis inhibition. However, AMPK activation requires high Met concentrations at more than 1 mM, which are unachievable .

View Article and Find Full Text PDF

Junctophilin-2 (JP2) is a critical structural protein in the heart by stabilizing junctional membrane complexes between the plasma membrane and sarcoplasmic reticula responsible for precise Ca regulation. Such complexes are essential for efficient cardiomyocyte contraction and adaptation to altered cardiac workload conditions. Mutations in the JPH2 gene that encodes JP2 are associated with inherited cardiomyopathies and arrhythmias, and disruption of JP2 function is lethal.

View Article and Find Full Text PDF

Fucoxanthin attracts increasing attentions due to its potential health benefits, which has been exploited in several food commodities. However, fucoxanthin available for industrial application is mainly derived from macroalgae, and is not yet sufficiently cost-effective compared with microalgae. This review focuses on the strategies to improve fucoxanthin productivity and approaches to reduce downstream costs in microalgal production.

View Article and Find Full Text PDF

Background: Transcriptional remodeling is known to contribute to heart failure (HF). Targeting stress-dependent gene expression mechanisms may represent a clinically relevant gene therapy option. We recently uncovered a salutary mechanism in the heart whereby JP2 (junctophilin-2), an essential component of the excitation-contraction coupling apparatus, is site-specifically cleaved and releases an N-terminal fragment (JP2NT [N-terminal fragment of JP2]) that translocates into the nucleus and functions as a transcriptional repressor of HF-related genes.

View Article and Find Full Text PDF

With the growing development of hydropower projects all over the world, the excessive greenhouse gas (GHG) emissions from increasing reservoirs have drawn public concern. While precise evaluations of GHG emissions are urgently needed, the widely applied methods including floating chamber (FC) method and thin boundary layer (TBL) method are unsatisfactory. In this paper, a new methodology of estimating CO emission coupling FC and TBL methods was proposed.

View Article and Find Full Text PDF

This study comprehensively explored underlying mechanism of fed-batch culture on product biosynthesis in Chromochloris zofingiensis by dynamic model, targeted metabolite determination, enzyme activity analysis, and C tracer-based metabolic flux analysis. Based on dynamic models of cell growth and product formation, exponential fed-batch culture and fed-batch culture based on pH changes were established to increase biomass concentration by 20.05-fold and 18.

View Article and Find Full Text PDF

Maternal obesity has been reported to be related to neurodevelopmental disorders in the offspring. However, the underlying mechanisms and effective interventions remain unclear. This cross-sectional study with 778 children aged 7-14 years in China indicated that maternal obesity is strongly associated with children's lower cognition and sociality.

View Article and Find Full Text PDF

Circadian misalignment induced by a high-fat diet (HFD) increases the risk of metabolic diseases. Methionine restriction (MR) is known to have the potential of alleviating obesity by improving insulin sensitivity. However, the role of the circadian clock in mediating the effects of MR on obesity-related metabolic disorders remains unclear.

View Article and Find Full Text PDF

Glycolipid metabolism disorder is one of the causes of type 2 diabetes (T2D). Alternate-day fasting (ADF) is an effective dietary intervention to counteract T2D. The present study is aimed to determine the underlying mechanisms of the benefits of ADF metabolic on diabetes-induced glycolipid metabolism disorders in db/db mice.

View Article and Find Full Text PDF

Intermittent fasting (IF) has been reported to have beneficial effects on improving gut function via lowering gut inflammation and altering the gut microbiome diversity. In this study, we aimed to investigate the differential effects of three different common IF treatments, alternate day fasting (ADF), time-restricted fasting (TRF), and intermittent energy restriction (IER), on a dextran sodium sulfate (DSS)-induced colitis mouse model. The results indicated that TRF and IER, but not ADF improved the survival rates of the colitis mice.

View Article and Find Full Text PDF