Publications by authors named "Weiyang Qin"

This paper clarifies the mechanism of the dynamic characteristics of the water-lubricated bearing-rotor coupling system at different operating stages. Dynamic models of the water-lubricated bearing-rotor system under fluid lubrication are developed. The influences of different operating modules on the dynamic characteristics are investigated.

View Article and Find Full Text PDF

Nonlinear dynamics of discontinuous oscillators with unilateral constraints and non-random parametric uncertainties are investigated. Nonlinear oscillators considering single- and double-sided constraints are carefully constructed to exhibit rich bifurcations, such as period-doubling and Neimark-Sacker bifurcations. In deterministic amplitude-frequency responses, both hardening and softening effects are induced by non-smooth contact-type nonlinearities.

View Article and Find Full Text PDF

To monitor the health status of the bridge, many sensors are needed to be mounted on it. Converting bridge vibration energy to electrical energy is considered as a potential solution to the problem of providing reliable electric power to these sensors. The objective of this work is to present an operable strategy for improving the electric energy output of a piezoelectric energy harvester installed on a bridge by introducing bi-stable characteristics.

View Article and Find Full Text PDF

The conventional piezoelectric metamaterials with operational-amplifier-based shunt circuits have limited application due to the voltage restriction of the amplifiers. In this research, we report a novel piezoelectric metamaterial beam that takes advantage of mechanical shunt resonators. The proposed metamaterial beam consisted of a piezoelectric beam and remote mechanical piezoelectric resonators coupled with electrical wires.

View Article and Find Full Text PDF

Bridges play an increasingly more important role in modern transportation, which is why many sensors are mounted on it in order to provide safety. However, supplying reliable power to these sensors has always been a great challenge. Scavenging energy from bridge vibration to power the wireless sensors has attracted more attention in recent years.

View Article and Find Full Text PDF

Wearable and implantable bio-integrated electronics have started to gain momentum because of their essential role in improving the quality of life for various patients and healthy individuals. However, their continuous operation is often limited by traditional battery technologies with a limited lifespan, creating a significant challenge for their development. Thus, it is highly desirable to harvest biomechanical energies from human motion for self-powered bio-integrated functional devices.

View Article and Find Full Text PDF

To harvest the energy of variable-speed wind, we proposed a dynamic multi-stable configuration composed of a piezoelectric beam and a rectangular plate. At low wind speeds, the system exhibits bi-stability, whereas, at high wind speeds, the system exhibits a dynamic tri-stability, which is beneficial for harvesting variable-speed wind energy. The theoretical analysis was carried out.

View Article and Find Full Text PDF

Flexible electronic systems have received increasing attention in the past few decades because of their wide-ranging applications that include the flexible display, eyelike digital camera, skin electronics, and intelligent surgical gloves, among many other health monitoring devices. As one of the most widely used technologies to integrate rigid functional devices with elastomeric substrates for the manufacturing of flexible electronic devices, transfer printing technology has been extensively studied. Though primarily relying on reversible interfacial adhesion, a variety of advanced transfer printing methods have been proposed and demonstrated.

View Article and Find Full Text PDF