Publications by authors named "Weiya Zhou"

Large-area flexible transparent conductive films (TCFs) are highly desired for future electronic devices. Nanocarbon TCFs are one of the most promising candidates, but some of their properties are mutually restricted. Here, a novel carbon nanotube network reorganization (CNNR) strategy, that is, the facet-driven CNNR (FD-CNNR) technique, is presented to overcome this intractable contradiction.

View Article and Find Full Text PDF

High-efficiency extraction of long single-wall carbon nanotubes (SWCNTs) with excellent optoelectronic properties from SWCNT solution is critical for enabling their application in high-performance optoelectronic devices. Here, a straightforward and high-efficiency method is reported for length separation of SWCNTs by modulating the concentrations of binary surfactants. The results demonstrate that long SWCNTs can spontaneously precipitate for binary-surfactant but not for single-surfactant systems.

View Article and Find Full Text PDF

Objective: To analyze the application effect of damage control surgery (DCS) combined with seamless integrated rescue mode in emergency treatment of severe thoracic and abdominal trauma.

Methods: The clinical data of 90 patients with severe thoracic and abdominal trauma admitted to the emergency room of our hospital from September 2020 to September 2021 were selected for the retrospective analysis. According to the different treatment methods, they were divided into the experimental group (EG) and the control group (CG), with 45 cases in each group.

View Article and Find Full Text PDF

Industrial production of single-chirality carbon nanotubes is critical for their applications in high-speed and low-power nanoelectronic devices, but both their growth and separation have been major challenges. Here, we report a method for industrial separation of single-chirality carbon nanotubes from a variety of raw materials with gel chromatography by increasing the concentration of carbon nanotube solution. The high-concentration individualized carbon nanotube solution is prepared by ultrasonic dispersion followed by centrifugation and ultrasonic redispersion.

View Article and Find Full Text PDF

High-purity enantiomer separation of chiral single-wall carbon nanotubes (SWCNTs) remains a challenge compared with electrical type and chirality separations due to the limited selectivities for both chirality and handedness, which is important for an exploration of their properties and practical applications. Here, we performed length fractionation for enantiomer-purified SWCNTs and found a phenomenon in which the enantioselectivities were higher for longer nanotubes than for shorter nanotubes due to length-dependent interactions with the gel medium, which provided an effective strategy of controlling nanotube length for high-purity enantiomer separation. Furthermore, we employed a gentler pulsed ultrasonication instead of traditional vigorous ultrasonication for preparation of a low-defect long SWCNT dispersion and achieved the enantiomer separation of single-chirality (6,5) SWCNTs with an ultrahigh enantiomeric purity of up to 98%, which was determined by using the linear relationship between the normalized circular dichroism intensity and the enantiomeric purity.

View Article and Find Full Text PDF

A high-temperature accelerometer plays an important role for ensuring normal operation of equipment in aerospace, such as monitoring and identifying abnormal vibrations of aircraft engines. Phase transitions of piezoelectric crystals, mechanical failure and current leakage of piezoresistive/capacitive materials are the prominent inherent limitations of present high-temperature accelerometers working continuously above 973 K. With the rapid development of aerospace, it is a great challenge to develop a new type of vibration sensor to meet the crucial demands at high temperature.

View Article and Find Full Text PDF

Establishing the relationship between the electrical transport properties of single-wall carbon nanotubes (SWCNTs) and their structures is critical for the design of high-performance SWCNT-based electronic and optoelectronic devices. Here, we systematically investigated the effect of the chiral structures of SWCNTs on their electrical transport properties by measuring the performance of thin-film transistors constructed by eleven distinct (n, m) single-chirality SWCNT films. The results show that, even for SWCNTs with the same diameters but different chiral angles, the difference in the on-state current or carrier mobility could reach an order of magnitude.

View Article and Find Full Text PDF

Although individual carbon nanotubes (CNTs) are superior to polymer chains, the mechanical and thermal properties of CNT fibers (CNTFs) remain inferior to synthetic fibers because of the failure of embedding CNTs effectively in superstructures. Conventional techniques resulted in a mild improvement of target properties while degrading others. Here, a double-drawing technique is developed to rearrange the constituent CNTs.

View Article and Find Full Text PDF

Structural control of single-wall carbon nanotubes (SWCNTs) with uniform properties is critical not only for their property modulation and functional design but also for applications in electronics, optics, and optoelectronics. To achieve this goal, various separation techniques have been developed in the past 20 years through which separation of high-purity semiconducting/metallic SWCNTs, single-chirality species, and even their enantiomers have been achieved. This progress has promoted the property modulation of SWCNTs and the development of SWCNT-based optoelectronic devices.

View Article and Find Full Text PDF

As possible alternatives to traditional thermoelectric (TE) materials, carbon nanomaterials and their hybrid materials have great potential in the future application of flexible and lightweight temperature detection. In this work, an integrated, highly flexible, and tailorable TE temperature detector with high performance has been fabricated based on a continuous single-walled carbon nanotube (SWCNT) fiber. The detector consists of more than one pairs of thermocouples composed of p-type SWCNT fiber and n-type SWCNT hybrid fiber in situ doped by polyethylenimine.

View Article and Find Full Text PDF

Mass production of zigzag and near-zigzag single-wall carbon nanotubes (SWCNTs), whether by growth or separation, remains a challenge, which hinders the disclosure of their previously unknown property and practical applications. Here, we report a method to separate SWCNTs by chiral angle through temperature control of a binary surfactant system of sodium cholate (SC) and SDS in gel chromatography. Eleven types of single-chirality SWCNT species with chiral angle less than 20° were efficiently separated including multiple zigzag and near-zigzag species.

View Article and Find Full Text PDF

Passivation of electronic defects on the surface and at grain boundaries (GBs) of perovskite films has become one of the most effective tactics to suppress charge recombination in perovskite solar cells. It is demonstrated that trap states can be effectively passivated by Lewis acid or base functional groups. In this work, nicotinamide (NTM, commonly known as vitamin B3 or vitamin PP) serving as a Lewis base additive is introduced into the PbI and/or FAI: MABr: MACl precursor solution to obtain NTM modified perovskite films.

View Article and Find Full Text PDF

The inorganic CsPbIBr perovskite faces serious challenges of low phase stability and high moisture sensitivity. The moisture controllable process of a hole-transporting layer (HTL) is crucial for the development of stable and efficient inorganic perovskite solar cells (IPSCs). In this work, we proposed an oxidization-free spiro-OMeTAD hole-transport layer (HTL) with a preoxidized spiro-OMeTAD solution to prevent moisture and completely avoid the phase transition of CsPbIBr from the α-phase to β-phase.

View Article and Find Full Text PDF

We quantitatively analyze the effect of reabsorption on the Raman spectroscopy of (10, 3) and (8, 3) single-chirality single-wall carbon nanotube (SWCNT) solutions by varying the detection depth in confocal micro-Raman measurements and SWCNT concentration the in sample solution. The increase of the detection depth and concentration of SWCNTs enhances the reabsorption effect and decreases the intensities of the Raman features. More importantly, reabsorption exhibits different effects on different Raman features such as the radial breathing mode (RBM) and G+ band, strongly depending on the resonance degree of the scattered light energy and the interband transition of SWCNTs.

View Article and Find Full Text PDF

Single-walled carbon nanotube (SWCNT) films are promising materials as flexible transparent conductive films (TCFs). Here, inspired by the extrusion blown plastic film technique and the SWCNT synthesis approach by floating catalyst chemical vapor deposition (FCCVD), a novel blown aerosol chemical vapor deposition (BACVD) method is reported to directly and continuously produce freestanding SWCNT TCFs at several hundred meters per hour. The synthesis mechanism, involving blowing a stable aerosol bubble and transforming the bubble into an aerogel, is investigated, and a general phase diagram is established for this method.

View Article and Find Full Text PDF

One of the critical challenges for semiconductor photocatalysis is the high efficiency utilization of solar energy. For plasmonic metal-semiconductor photocatalysts, the photocatalytic activity over an extended wavelength range for a photoresponsive semiconductor could be significantly improved either via the direct electron transfer (DET) or via the plasmon-induced resonant energy transfer (PIRET). Still, the narrow spectral overlap of plasmon and the semiconductor band edge is a key factor in restricting the development of PIRET.

View Article and Find Full Text PDF

An all-carbon pressure sensor is designed and fabricated based on reduced graphene oxide (rGO) nanomaterials. By sandwiching one layer of superelastic rGO aerogel between two freestanding high-conductive rGO thin papers, the sensor works based on the contact resistance at the aerogel-paper interfaces, getting rid of the alien materials such as polymers and metals adopted in traditional sensors. Without the limitation of alien materials, the all-carbon sensors demonstrate an ultrawide detecting range (0.

View Article and Find Full Text PDF

Efficient electron transport layers (ETLs) are the crucial issue for electron transport and hole blocking in organic-inorganic hybrid perovskite solar cells (PSCs). To date, most of the reported effective ETLs have comprised TiO, which exhibits limited electron mobility and numerous defect states and restricts the enhancement of the performance of PSCs. Hence, the investigation of effective tactics for improving the electronic properties of TiO is critical for the fabrication of high-efficiency devices.

View Article and Find Full Text PDF

The aim of this study is to improve the quality of testing for glucose-6-phosphate dehydrogenase (G6PD) deficiency through evaluation and analysis of the laboratory tests for G6PD activity. External quality assessment (EQA) was carried out twice per year with five samples each from 2014 to 2016. Samples were used for quantitative and qualitative assays.

View Article and Find Full Text PDF

The electrical characteristics of carbon nanotube (CNT) thin-film transistors (TFTs) strongly depend on the properties of the gate dielectric that is in direct contact with the semiconducting CNT channel materials. Here, we systematically investigated the dielectric effects on the electrical characteristics of fully printed semiconducting CNT-TFTs by introducing the organic dielectrics of poly(methyl methacrylate) (PMMA) and octadecyltrichlorosilane (OTS) to modify SiO dielectric. The results showed that the organic-modified SiO dielectric formed a favorable interface for the efficient charge transport in s-SWCNT-TFTs.

View Article and Find Full Text PDF

It is a great challenge to substantially improve the practical performance of flexible thermoelectric modules due to the absence of air-stable n-type thermoelectric materials with high-power factor. Here an excellent flexible n-type thermoelectric film is developed, which can be conveniently and rapidly prepared based on the as-grown carbon nanotube continuous networks with high conductivity. The optimum n-type film exhibits ultrahigh power factor of ∼1,500 μW m K and outstanding stability in air without encapsulation.

View Article and Find Full Text PDF

Exploiting the superior properties of nanomaterials at macroscopic scale is a key issue of nanoscience. Different from the integration strategy, "additive synthesis" of macroscopic structures from nanomaterial templates may be a promising choice. In this paper, we report the epitaxial growth of aligned, continuous, and catalyst-free carbon nanofiber thin films from carbon nanotube films.

View Article and Find Full Text PDF

Hybrid hydro-responsive actuators are developed by infiltrating carbon nanotube yarns using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). These actuators demonstrate impressive rotation and contraction in response to water due to volumetric expansion of the helical arrangement of carbon nanotubes. The total torsional stroke is 3720 revolutions per m and the simultaneously generated contractive strain reaches 24% at a paddle-to-yarn mass ratio of 350.

View Article and Find Full Text PDF

An ingenious strategy is put forward to evaluate accurately the thermoelectric performance of carbon nanotube (CNT) thin films, including thermal conductivity, electrical conductivity, and Seebeck coefficient in the same direction. The results reveal that the as-prepared CNT interconnected films and CNT fibers possess enormous potential of thermoelectric applications because of their ultrahigh power factors.

View Article and Find Full Text PDF

Surfactants or polymers are usually used for the liquid processing of carbon nanotubes for their structure separation. However, they are difficult to remove after separation, affecting the intrinsic properties and applications of the separated species. Here, we report an ethanol-assisted gel chromatography for the chirality separation of single-walled carbon nanotubes (SWCNTs), in which ethanol is employed to finely tune the density/coverage of sodium dodecyl sulfate (SDS) on nanotubes, and thus the interactions between SWCNTs and an allyl dextran-based gel.

View Article and Find Full Text PDF