Carrier transport is an equally decisive factor as carrier separation for elevating photocatalytic efficiency. However, limited by indefinite structures and low crystallinities, studies on enhancing carrier transport of organic photocatalysts are still in their infancy. Here, we develop an σ-linkage length modulation strategy to enhance carrier transport in imidazole-alkyl-perylene diimide (IMZ-alkyl-PDI, corresponding to D-σ-A) photocatalysts by controlling π-π stacking distance.
View Article and Find Full Text PDFHigh-efficiency photocatalysts based on metal-organic frameworks (MOFs) are often limited by poor charge separation and slow charge-transfer kinetics. Herein, a novel MOF photocatalyst is successfully constructed by encapsulating C into a nano-sized zirconium-based MOF, NU-901. By virtue of host-guest interactions and uneven charge distribution, a substantial electrostatic potential difference is set-up in C @NU-901.
View Article and Find Full Text PDFThe insufficient charge separation and sluggish exciton transport severely limit the utilization of polymeric photocatalysts. To resolve the above issues, we incorporate bountiful carboxyl substituents within a novel benzodiimidazole oligomer and assemble it into a crystalline semiconductor. The photocatalyst is polar, hydrophilic, short-range crystalline, and capable of both hydrogen and oxygen evolution.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2022
Temperature changes are a major challenge in outdoor guided wave structural health monitoring of rails. Temperature variations greatly impact the waveform of guided wave signals, making it challenging to diagnose and characterize defects. Traditional temperature compensation methods, such as signal stretch and scale transform, are restricted to use in regular structures, such as plates and pipes.
View Article and Find Full Text PDFMechanically interlocked molecules (MIMs) with discrete molecular components linked through a mechanical bond in space can be harnessed for the operation of molecular switches and machines, which shows huge potential to imitate the dynamic response of natural enzymes. In this work, rotaxane compounds were adopted as building monomers for the synthesis of a crown-ether ring mechanically intercalated covalence organic framework (COF). This incorporation of MIMs into open architecture implemented large amplitude motions, whose wheel slid along the axle in response to external stimulation.
View Article and Find Full Text PDFThe rapid, complete, targeted and safe treatment for tumors remains a key issue in cancer therapy. A novel treatment of solid tumors by supramolecular photocatalyst Nano-SA-TCPP with the irradiation of 600-700 nm wavelength is established. Solid tumors (100 mm) can be eliminated within 10 min.
View Article and Find Full Text PDFA highly crystalline perylene imide polymer (Urea-PDI) photocatalyst is successfully constructed. The Urea-PDI presents a wide spectrum response owing to its large conjugated system. The Urea-PDI performs so far highest oxygen evolution rate (3223.
View Article and Find Full Text PDFHere, we report a facile salt-assisted direct liquid-phase exfoliation method for mass production of MoS nanosheets. We choose organic solvent isopropanol (IPA) as exfoliation media and potassium ferrocyanide, potassium sodium tartrate, or sodium tartrate as salt, the assistant. The selected salts show universal and efficient assistant effect for the exfoliation of MoS in IPA.
View Article and Find Full Text PDF