Due to the notable disparities in the physical and chemical characteristics between titanium and steel, the direct fusion of titanium/steel bimetallic sheets results in a considerable formation of fragile intermetallic compounds, making it difficult to achieve excellent metallurgical welded joints. In this study, a multi-principal powder of CoCrNiMn was designed and utilized as a filler material in the welding of the TA1/Q345 bimetallic sheet. It was expected that the in situ formation of Fe(CoCrNiMn)Ti high-entropy alloys would be achieved using the filler powders, combined with the Ti and Fe elements from the melting of the TA1 and Q345 so as to restrain the generation of Fe-Ti IMCs and obtain the promising welded joints of the TA1/Q345 bimetallic sheet.
View Article and Find Full Text PDFIntroduction: As an ephemeral and oligotrophic environment, the phyllosphere harbors many highly diverse microorganisms. Importantly, it is known that their colonization of plant leaf surfaces is considerably influenced by a few abiotic factors related to climatic conditions. Yet how the dynamics of phyllosphere bacterial community assembly are shaped by detailed climatological elements, such as various bioclimatic variables, remains poorly understood.
View Article and Find Full Text PDFRisley-prism-based image sensors can expand the imaging field of view through beam control. The larger the top angle of the prism, the higher the magnification of the field of view, but at the same time, it aggravates the problem of imaging aberrations, which also puts higher requirements on the aberration correction method for the Risley-prism-based image sensor. To improve the speed, accuracy, and stability of the aberration correction process, an automatic calibration method for the Risley-prism-based image sensor is proposed based on a two-axis turntable.
View Article and Find Full Text PDFSci Total Environ
November 2023
By ecologically interacting with various biotic and abiotic agents acting in soil ecosystems, highly diverse soil microorganisms establish complex and stable assemblages and survive in a community context in natural settings. Besides facilitating soil microbiome to maintain great levels of population homeostasis, such microbial interactions drive soil microbes to function as the major engine of terrestrial biogeochemical cycling. It is verified that the regulative effect of microbe-microbe interplay plays an instrumental role in microbial-mediated promotion of soil health, including bioremediation of soil pollutants and biocontrol of soil-borne phytopathogens, which is considered an environmentally friendly strategy for ensuring the healthy condition of soils.
View Article and Find Full Text PDFMajor losses of crop yield and quality caused by soil-borne plant diseases have long threatened the ecology and economy of agriculture and forestry. Biological control using beneficial microorganisms has become more popular for management of soil-borne pathogens as an environmentally friendly method for protecting plants. Two major barriers limiting the disease-suppressive functions of biocontrol microbes are inadequate colonization of hosts and inefficient inhibition of soil-borne pathogen growth, due to biotic and abiotic factors acting in complex rhizosphere environments.
View Article and Find Full Text PDFMarine mussels are key ecological engineers that form dense aggregations to maintain the vital habitat in benthic systems. It is essential to understand the consequences of mussel byssus attachment in elevated temperatures associated with ocean warming. We evaluated byssus production and the mechanical performance of threads in the mussel Mytilus coruscus at 21° (control), 27 °C (average temperature in the M.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by severe neuronal loss. Necroptosis, or programmed cell necrosis, is mediated by the receptor interacting protein kinase-1 and -3/mixed lineage kinase domain-like protein (RIP1/RIP3/MLKL) pathway, and is involved in several neurodegenerative diseases. Here we aimed to explore the involvement of necroptosis in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP)-induced PD and determine the potential mechanisms.
View Article and Find Full Text PDFObjective: Glutamate excitotoxicity and neuronal apoptosis are suggested to contribute to early brain injury after subarachnoid hemorrhage (SAH). Annexin A7 (ANXA7) has been shown to regulate glutamate release. However, the role of ANXA7 in early brain injury after SAH has not been illustrated.
View Article and Find Full Text PDFBackground: The multi-target deep brain stimulation (DBS) aimed at improving symptoms related to different nuclei is a promising research direction. However, to implant a single lead into multiple targets simultaneously is difficult with the current lead implantation method.
New Method: We proposed a novel stereotaxic system used for implanting a curved lead to any two targets of the brain, and used the theoretical "curved lead method".
We investigate single DNA stretching dynamics in a de-wetting flow over micropillars using Brownian dynamics simulation. The Brownian dynamics simulation is coupled with transient flow field computation through a numerical particle tracking algorithm. The droplet formation on the top of the micropillar during the de-wetting process creates a flow pattern that allows DNA to stretch across the micropillars.
View Article and Find Full Text PDFThe endovascular treatment of intracranial aneurysms remains a challenge, especially when the aneurysm is large in size and has irregular, non-spherical geometry. In this paper, we use computational fluid dynamics to simulate blood flow in a vertebro-basilar junction giant aneurysm for the following three cases: (1) an empty aneurysm, (2) an aneurysm filled with platinum coils, and (3) an aneurysm filled with a yield stress fluid material. In the computational model, blood and the coil-filled region are treated as a non-Newtonian fluid and an isotropic porous medium, respectively.
View Article and Find Full Text PDFEnzyme-linked immunosorbent assay (ELISA) has been widely used in medical diagnostics, environmental analyses, and biochemical studies. To reduce assay time and lower consumption of reagents in cytokine ELISA analysis, a polymeric microfluidic biochip has been designed and fabricated via several new techniques: Polyaniline-based surface modification for superhydrophobic capillary valving and oxygen plasma-poly(ethyleneimine)-tyrosinase-protein A modification for high sensitivity protein detection. The proper flow sequencing was achieved using the superhydrophobic capillary valves.
View Article and Find Full Text PDFWe have recently developed a semicontinuous flow electroporation (SFE) device for in vitro DNA delivery. Cells mixed with plasmid DNA continuously flowed through a serpentine channel, the side walls of which also serving as electrodes. With the use of pWizGFP plasmid and K562 cells as a model system, SFE showed better transgene expression (10-15%) compared to a commercial electroporation system.
View Article and Find Full Text PDFJ Environ Sci (China)
October 2002
The sedimentation of cylindrical pollutant particles which fall through a fluid is investigated. Differing from previous research work, particle oscillation and effect of particle on the fluid are considered, and the torque exerted on a particle when viscous fluid flow around a particle is got through experiment and included in the numerical simulation. The computational results showed that the sedimentation velocities of particle increase slowly with the increase of particle aspect ratio phi.
View Article and Find Full Text PDF