Biomimetic curved compound-eye cameras (BCCECs) have attracted great attention for their potential applications in a variety of fields such as target recognition, monitor and three-dimensional localization in military due to their unique optical properties such as large field of view (FOV) and small size. In this work, we proposed a multi-target distance measurement method based on a dual-BCCEC system in a large FOV. To guarantee the precise measurement of the distance of multiple targets, a feature point searching and matching algorithm is developed for the dual-BCCEC system to improve the localizing efficiency of common feature points.
View Article and Find Full Text PDFDiffractive multispectral optical imaging plays an essential role in optical sensing, which typically suffers from the image blurring problem caused by the spatially variant point spread function. Here, we propose a novel high-quality and efficient hybrid space calibrated 3D network "HSC3D" for spatially variant diffractive multispectral imaging that utilizes the 3D U-Net structure combined with space calibration modules of magnification and rotation effects to achieve high-accuracy eight-channel multispectral restoration. The algorithm combines the advantages of the space calibrated module and U-Net architecture with 3D convolutional layers to improve the image quality of diffractive multispectral imaging without the requirements of complex equipment modifications and large amounts of data.
View Article and Find Full Text PDFNatural selection has driven arthropods to evolve fantastic natural compound eyes (NCEs) with a unique anatomical structure, providing a promising blueprint for artificial compound eyes (ACEs) to achieve static and dynamic perceptions in complex environments. Specifically, each NCE utilises an array of ommatidia, the imaging units, distributed on a curved surface to enable abundant merits. This has inspired the development of many ACEs using various microlens arrays, but the reported ACEs have limited performances in static imaging and motion detection.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Traditional ultraviolet-visible spectroscopic quantitative analytical methods face challenges in simultaneous and long-term accurate measurement of chemical oxygen demand (COD) and nitrate due to spectral overlap and the interference from stochastic background caused by turbidity and chromaticity in water. Addressing these limitations, a compact dual optical path spectrum detection sensor is introduced, and a novel ultraviolet-visible spectroscopic quantitative analysis model based on physics-informed multi-task learning (PI-MTL) is designed. Incorporating a physics-informed block, the PI-MTL model integrates pre-existing physical knowledge for enhanced feature extraction specific to each task.
View Article and Find Full Text PDFSpectral imaging technology based on on-chip spectroscopy can find applications in areas including aerospace, industrial and consumer electronics, and so on. Since each application normally requires a different set and number of spectral bands, the development of customized spectroscopy solutions with more compact size and lower cost becomes quite important. In this paper, we demonstrate a compact, highly customizable imaging spectrometer scheme based on custom-made multi-strip filter arrays, which maintains an average high transmission of ∼85, narrow bandwidth of ∼30 , and high optical density of ∼ 2 in the blocking regions across the visible to near-infrared waveband.
View Article and Find Full Text PDFFor gravitational wave detection, the telescope is required to have an ultra-low wavefront error and ultra-high signal-to-noise ratio, where the power of the stray light should be controlled on the order of less than 10. In this work, we propose an alternative stray light suppression method for the optical design of an off-axis telescope with four mirrors by carefully considering the optimal optical paths. The method includes three steps.
View Article and Find Full Text PDFThe remarkable light perception abilities of the mantis shrimp, which span a broad spectrum ranging from 300 nm to 720 nm and include the detection of polarized light, serve as the inspiration for our exploration. Drawing insights from the mantis shrimp's unique visual system, we propose the design of a multifunctional imaging sensor capable of concurrently detecting spectrum and polarization across a wide waveband. This sensor is able to show spectral imaging capability through the utilization of a 16-channel multi-waveband Fabry-Pérot (FP) resonator filter array.
View Article and Find Full Text PDFHistone H3 tyrosine-99 sulfation (H3Y99sulf) is a recently identified histone mark that can cross-talk with H4R3me2a to regulate gene transcription, but its role in cancer biology is less studied. Here, we report that H3Y99sulf is a cancer-associated histone mark that can mediate hepatocellular carcinoma (HCC) cells responding to hypoxia. Hypoxia-stimulated SNAIL pathway elevates the expression of PAPSS2, which serves as a source of adenosine 3'-phosphate 5'-phos-phosulfate for histone sulfation and results in upregulation of H3Y99sulf.
View Article and Find Full Text PDFIn this work, we demonstrated a new type of biomimetic multispectral curved compound eye camera (BM3C) inspired by insect compound eyes for aerial multispectral imaging in a large field of view. The proposed system exhibits a maximum field of view (FOV) of 120 degrees and seven-waveband multispectral images ranging from visible to near-infrared wavelengths. Pinhole imaging theory and the image registration method from feature detection are used to reconstruct the multispectral 3D data cube.
View Article and Find Full Text PDFVortex beams accompanied with orbital angular momentum have attracted significant attention in research fields due to their formidable capabilities in various crucial applications. However, conventional devices for generating vortex beams still suffer from bulky sizes, high cost, and confined performances. Metalens, as an advanced platform to arbitrarily control the optical waves, has promising prospects to address the predicament for conventional devices.
View Article and Find Full Text PDFThe neuropeptide B/W signaling system is composed of neuropeptide B (NPB), neuropeptide W (NPW), and two cognate receptors, NPBWR1 and NPBWR2, which are involved in diverse physiological processes, including the central regulation of neuroendocrine axes in vertebrates. The components of this signaling system are not well conserved during vertebrate evolution, implicating its functional diversity. The present study characterized the ricefield eel neuropeptide B/W system, generated a specific antiserum against the neuropeptide B/W receptor, and examined the potential roles of the system in the regulation of adenohypophysial functions.
View Article and Find Full Text PDFTyrosine sulfation is a common posttranslational modification in mammals. To date, it has been thought to be limited to secreted and transmembrane proteins, but little is known about tyrosine sulfation on nuclear proteins. Here we report that SULT1B1 is a histone sulfotransferase that can sulfate the tyrosine 99 residue of nascent histone H3 in cytosol.
View Article and Find Full Text PDFThe bionic curved compound-eye camera is a bionic-inspired multi-aperture camera, which can be designed to have an overlap on the field of view (FOV) in between adjacent ommatidia so that 3D measurement is possible. In this work, we demonstrate the 3D measurement with a working distance of up to 3.2 m by a curved compound-eye camera.
View Article and Find Full Text PDFAcetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs. ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the fatty acid synthesis pathway.
View Article and Find Full Text PDFIn this work, we demonstrate a prototype of a biomimetic multispectral curved compound eye camera (BMCCEC). In comparison with traditional multispectral imaging systems, the BMCCEC developed in this work has the distinct features of multi-spectral imaging on multiple targets in real time in an ultra-large field of view (FOV), which can be attributed to its biomimetic curved compound eye structure as well as the multispectral cluster network. Specifically, the BMCCEC has a total of 104 multispectral ommatidia and a FOV of 98°×98°, which is able to realize 7-band multispectral imaging with center wavelengths of 500 nm, 560 nm, 600 nm, 650 nm, 700 nm, 750 nm and 800 nm and a spectral resolution of 10 nm.
View Article and Find Full Text PDFA modified single-focus fractal zone plate (MSFFZP) is proposed to generate a single main focus with many subsidiary foci or two equal-intensity main foci with many subsidiary foci. Widths of high-transmission zones, which have influence on the number of the high-order diffraction foci, such as the second-order focus and the fourth-order focus, can adjust first-order fractal focal intensities, but have no influence on first-order focal positions. Moreover, the MSFFZPs have the first-order foci or the first and second order foci only along the optic axis.
View Article and Find Full Text PDFIn this Letter, we demonstrate the design and fabrication of a biomimetic curved compound-eye camera (BCCEC) with a high resolution for detecting distant moving objects purpose. In contrast to previously reported compound-eye cameras, our BCCEC has two distinct features. One is that the ommatidia of the compound eye are deployed on a curved surface which makes a large field of view (FOV) possible.
View Article and Find Full Text PDFBackground: The research of extracellular matrix stent (ECM) has made some progress in the repair of urethra and bladder defects.
Objectives: To observe the effects of highly bioactive ECM scaffold on the regeneration and repair of defects in long-segment ureteral replacement.
Material And Methods: An animal model of long-segment ureteral defect was established and four-layer tubular highly bioactive ECM materials were prepared.
The obstacle of imaging through multimode fibers (MMFs) is encountered due to the fact that the inherent mode dispersion and mode coupling lead the output of the MMF to be scattered and bring about image distortions. As a result, only noise-like speckle patterns can be formed on the distal end of the MMF. We propose a deep learning model exploited for computational imaging through an MMF, which contains an autoencoder (AE) for feature extraction and image reconstruction and self-normalizing neural networks (SNNs) sandwiched and employed for high-order feature representation.
View Article and Find Full Text PDFGeneralized composite aperiodic zone plates (GCAZPs) are proposed to generate clearer images at focal planes. The images can be produced by a target object at infinity based on a collimator. The proposed zone plate consists of the proposed radial zone plate (RZP), whose original radius is not zero, and the common aperiodic zone plate, which has the coincident first-order diffraction area and the same axial first-order diffraction intensity distribution.
View Article and Find Full Text PDFJ Phys Condens Matter
August 2020
Trapping and manipulating micro-size particles using optical tweezers has contributed to many breakthroughs in biology, materials science, and colloidal physics. However, it remains challenging to extend this technique to a few nanometers particles owing to the diffraction limit and the considerable Brownian motion of trapped nanoparticles. In this work, a nanometric optical tweezer is proposed by using a plasmonic nanocavity composed of the closely spaced silver coated fiber tip and gold film.
View Article and Find Full Text PDFObjective: The new clinical criteria termed SOFA and qSOFA were demonstrated to be more accurate than SIRS in screening patients at high risk of sepsis. We aim to evaluate the ability of SOFA, qSOFA and SIRS to predict septic shock after PCNL.
Patients And Methods: Consecutive patients undergoing PCNL were included to assess the performance of SOFA, qSOFA and SIRS in predicting septic shock, the AUC of ROC curve and decision curve analysis were used, and the optimal cutoff values and their achieving time were calculated.