Publications by authors named "Weixin Xie"

Deep generative models have advanced drug discovery but often generate compounds with limited structural novelty, providing constrained inspiration for medicinal chemists. To address this, we develop TransPharmer, a generative model that integrates ligand-based interpretable pharmacophore fingerprints with a generative pre-training transformer (GPT)-based framework for de novo molecule generation. TransPharmer excels in unconditioned distribution learning, de novo generation, and scaffold elaboration under pharmacophoric constraints.

View Article and Find Full Text PDF

Objective: Osteoarthritis (OA) is one of the leading causes of disability in the aging population. While about 10% of the adult population is affected by OA, there is to date no curative treatment and joint replacement surgery remains the only option for treating end-stage OA. Previous studies found elevated levels of the chemokine C-X-C motif ligand 9 (CXCL9) in the synovial fluid of OA knees.

View Article and Find Full Text PDF

The worldwide burden of skeletal diseases such as osteoporosis, degenerative joint disease and impaired fracture healing is steadily increasing. Tranexamic acid (TXA), a plasminogen inhibitor and anti-fibrinolytic agent, is used to reduce bleeding with high effectiveness and safety in major surgical procedures. With its widespread clinical application, the effects of TXA beyond anti-fibrinolysis have been noticed and prompted renewed interest in its use.

View Article and Find Full Text PDF

Graph Convolutional Networks (GCN) have shown outstanding performance in skeleton-based behavior recognition. However, their opacity hampers further development. Researches on the explainability of deep learning have provided solutions to this issue, with Class Activation Map (CAM) algorithms being a class of explainable methods.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) leads to skeletal changes, including bone loss in the unfractured skeleton, and paradoxically accelerates healing of bone fractures; however, the mechanisms remain unclear. TBI is associated with a hyperadrenergic state characterized by increased norepinephrine release. Here, we identified the β-adrenergic receptor (ADRB2) as a mediator of skeletal changes in response to increased norepinephrine.

View Article and Find Full Text PDF

Silencing mRNA through siRNA is vital for RNA interference (RNAi), necessitating accurate computational methods for siRNA selection. Current approaches, relying on machine learning, often face challenges with large data requirements and intricate data preprocessing, leading to reduced accuracy. To address this challenge, we propose a BERT model-based siRNA target gene knockdown efficiency prediction method called BERT-siRNA, which consists of a pre-trained DNA-BERT module and Multilayer Perceptron module.

View Article and Find Full Text PDF

Osteoarthritis represents a chronic degenerative joint disease with exceptional clinical relevance. Polymorphisms of the CALCA gene, giving rise to either a procalcitonin/calcitonin (PCT/CT) or a calcitonin gene-related peptide alpha (αCGRP) transcript by alternative splicing, were reported to be associated with the development of osteoarthritis. The objective of this study was to investigate the role of both PCT/CT and αCGRP transcripts in a mouse model of post-traumatic osteoarthritis (ptOA).

View Article and Find Full Text PDF
Article Synopsis
  • Discogenic low back pain (DLBP) is linked to intervertebral disc degeneration and involves complex mechanisms, particularly the role of calcitonin gene-related protein (CGRP) in modulating pain.
  • A rat model of DLBP was established, and experiments showed that CGRP treatment reduced pain sensitivity and inflammation in the spinal cord, similar to the effects of the microglial inhibitor minocycline.
  • The findings suggest that targeting CGRP and microglial activation could be a promising approach for treating DLBP and its associated pain.
View Article and Find Full Text PDF

Background: Posttraumatic osteoarthritis (OA) is a common disorder associated with a high socioeconomic burden, particularly in young, physically active, and working patients. Tranexamic acid (TXA) is commonly used in orthopaedic trauma surgery as an antifibrinolytic agent to control excessive bleeding. Previous studies have reported that TXA modulates inflammation and bone cell function, both of which are dysregulated during posttraumatic OA disease progression.

View Article and Find Full Text PDF

Impaired fracture healing is of high clinical relevance, as up to 15% of patients with long-bone fractures display non-unions. Fracture patients also include individuals treated with selective norepinephrine reuptake inhibitors (SNRI). As SNRI were previously shown to negatively affect bone homeostasis, it remained unclear whether patients with SNRI are at risk of impaired bone healing.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is associated with a hyperadrenergic state and paradoxically causes systemic bone loss while accelerating fracture healing. Here, we identify the beta2-adrenergic receptor (Adrb2) as a central mediator of these skeletal manifestations. While the negative effects of TBI on the unfractured skeleton can be explained by the established impact of Adrb2 signaling on bone formation, Adrb2 promotes neovascularization of the fracture callus under conditions of high sympathetic tone, including TBI and advanced age.

View Article and Find Full Text PDF

Notch signaling regulates cell fate in multiple tissues including the skeleton. Hajdu-Cheney-Syndrome (HCS), caused by gain-of-function mutations in the Notch2 gene, is a rare inherited disease featuring early-onset osteoporosis and increased risk for fractures and non-union. As the impact of Notch2 overactivation on fracture healing is unknown, we studied bone regeneration in mice harboring a human HCS mutation.

View Article and Find Full Text PDF

Background: Drug-drug interaction (DDI) information retrieval (IR) is an important natural language process (NLP) task from the PubMed literature. For the first time, active learning (AL) is studied in DDI IR analysis. DDI IR analysis from PubMed abstracts faces the challenges of relatively small positive DDI samples among overwhelmingly large negative samples.

View Article and Find Full Text PDF

Due to their potential improvement of high-temperature properties, the refractory metal hafnium (Hf) and the rare earth holmium (Ho) have attracted much attention. In the present research, NiAl-Cr(Mo) eutectic alloys with different Ho and Hf additions were fabricated by conventional smelting method and heat-treated to study the synergetic influence of strengthening elements and heat treatment. The samples were characterized using XRD, SEM, and TEM, and the three-point bending test was performed to obtain fracture toughness.

View Article and Find Full Text PDF

Titanium (Ti) and its alloys have been widely employed in aeronautical, petrochemical, and medical fields owing to their fascinating advantages in terms of their mechanical properties, corrosion resistance, biocompatibility, and so on. However, Ti and its alloys face many challenges, if they work in severe or more complex environments. The surface is always the origin of failure for Ti and its alloys in workpieces, which influences performance degradation and service life.

View Article and Find Full Text PDF

2-Photon fluorescence microscopy (2PFM) is an indispensable imaging technology for neuroscience. However, the imaging depth is usually limited to the cortical layer in mouse brain in vivo. Here, we demonstrate deep brain 2PFM in vivo excited at the 1700 nm window, using IR780 and aza-IR780 as fluorescent labels.

View Article and Find Full Text PDF

Multiphoton microscopy (MPM) is an enabling technology for visualizing deep-brain structures at high spatial resolution . Within the low tissue absorption window, shifting to longer excitation wavelengths reduces tissue scattering and boosts penetration depth. Recently, the 2200 nm excitation window has emerged as the last and longest window suitable for deep-brain MPM.

View Article and Find Full Text PDF

Motivation: Predicting the associations between human microbes and drugs (MDAs) is one critical step in drug development and precision medicine areas. Since discovering these associations through wet experiments is time-consuming and labor-intensive, computational methods have already been an effective way to tackle this problem. Recently, graph contrastive learning (GCL) approaches have shown great advantages in learning the embeddings of nodes from heterogeneous biological graphs (HBGs).

View Article and Find Full Text PDF

This study is to explore the mechanism of KDM1A-regulated hepatoblastoma (HB) development. Cancerous and paracancer tissues of 30 HB patients were collected for detection of KDM1A and DKK3 expression. HuH-6 and HepG2 cells were subjected to assays of cellular activities after treatment with sh-KDM1A, sh-DKK3, and/or XAV-939 (an inhibitor of the Wnt/β-catenin pathway).

View Article and Find Full Text PDF

Background: Bibliometric analysis was designed to investigate a systematic understanding of developments in exercise and osteoporosis research over the past 20 years.

Methods: Relevant publications from the Web of Science Core Collection were downloaded on April 26, 2022. CiteSpace, VOSviewer, and the online bibliometric analysis platform were used to conduct this scientometric study.

View Article and Find Full Text PDF

Objectives: To explore the feasibility of predicting the World Health Organization/International Society of Urological Pathology (WHO/ISUP) grade and progression-free survival (PFS) of clear cell renal cell cancer (ccRCC) using the radiomics features (RFs) based on the differential network feature selection (FS) method using the maximum-entropy probability model (MEPM).

Methods: 175 ccRCC patients were divided into a training set (125) and a test set (50). The non-contrast phase (NCP), cortico-medullary phase, nephrographic phase, excretory phase phases, and all-phase WHO/ISUP grade prediction models were constructed based on a new differential network FS method using the MEPM.

View Article and Find Full Text PDF

Short hairpin RNA (shRNA)-mediated gene silencing is an important technology to achieve RNA interference, in which the design of potent and reliable shRNA molecules plays a crucial role. However, efficient shRNA target selection through biological technology is expensive and time consuming. Hence, it is crucial to develop a more precise and efficient computational method to design potent and reliable shRNA molecules.

View Article and Find Full Text PDF

The neuropeptide Y(NPY) mediates bone metabolism and the degradation of cartilage in the peripheral nervous system. However, its role in the intervertebral disc degeneration (IDD) is less clear and warrant further study. The process of IDD has always been accompanied by inflammatory response and pyroptosis of nucleus pulposus cells (NPCs).

View Article and Find Full Text PDF

Liver ischemia-reperfusion injury (IRI) is a major complication of liver trauma, resection, and transplantation. IRI may lead to liver dysfunction and failure, but effective approach to address it is still lacking. To better understand the cellular and molecular mechanisms of liver IRI, functional roles of numerous cell types, including hepatocytes, Kupffer cells, neutrophils, and sinusoidal endothelial cells, have been intensively studied.

View Article and Find Full Text PDF

A persistent goal for drug design is to generate novel chemical compounds with desirable properties in a labor-, time-, and cost-efficient manner. Deep generative models provide alternative routes to this goal. Numerous model architectures and optimization strategies have been explored in recent years, most of which have been developed to generate two-dimensional molecular structures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionchj5e5eeo145k5vvgu11bkq4menu3k41): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once