Publications by authors named "Weixin Tang"

OMEGA RNA (ωRNA)-guided endonuclease IscB, the evolutionary ancestor of Cas9, is an attractive system for in vivo genome editing because of its compact size and mechanistic resemblance to Cas9. However, wild-type IscB-ωRNA systems show limited activity in human cells. Here we report enhanced OgeuIscB, which, with eight amino acid substitutions, displayed a fourfold increase in in vitro DNA-binding affinity and a 30.

View Article and Find Full Text PDF

Programmed RNA editing presents an attractive therapeutic strategy for genetic disease. In this study, we developed bacterial deaminase-enabled recoding of RNA (DECOR), which employs an evolved Escherichia coli transfer RNA adenosine deaminase, TadA8e, to deposit adenosine-to-inosine editing to CRISPR-specified sites in the human transcriptome. DECOR functions in a variety of cell types, including human lung fibroblasts, and delivers on-target activity similar to ADAR-overexpressing RNA-editing platforms with 88% lower off-target effects.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) regulate diverse cellular processes by dynamically interacting with RNA targets. However, effective methods to capture both stable and transient interactions between RBPs and their RNA targets are still lacking, especially when the interaction is dynamic or samples are limited. Here we present an assay of reverse transcription-based RBP binding site sequencing (ARTR-seq), which relies on in situ reverse transcription of RBP-bound RNAs guided by antibodies to identify RBP binding sites.

View Article and Find Full Text PDF

Adenine base editors (ABEs) are precise gene-editing agents that convert A:T pairs into G:C through a deoxyinosine intermediate. Existing ABEs function most effectively when the target A is in a TA context. Here we evolve the Escherichia coli transfer RNA-specific adenosine deaminase (TadA) to generate TadA8r, which extends potent deoxyadenosine deamination to RA (R = A or G) and is faster in processing GA than TadA8.

View Article and Find Full Text PDF

Compact CRISPR-Cas systems offer versatile treatment options for genetic disorders, but their application is often limited by modest gene-editing activity. Here we present enAsCas12f, an engineered RNA-guided DNA endonuclease up to 11.3-fold more potent than its parent protein, AsCas12f, and one-third of the size of SpCas9.

View Article and Find Full Text PDF

Background: The mushroom is reported to cause acute liver injury. It is found in Southern China, and has been previously associated with a high incidence of mortality.

Methods: We described a series of 10 patients with poisoning admitted to The Second Affiliated Hospital of the Chinese University of Hong Kong (Shenzhen) in April 2022.

View Article and Find Full Text PDF

N-methyladenosine (mA), the most abundant internal messenger RNA modification in higher eukaryotes, serves myriad roles in regulating cellular processes. Functional dissection of mA is, however, hampered in part by the lack of high-resolution and quantitative detection methods. Here we present evolved TadA-assisted N-methyladenosine sequencing (eTAM-seq), an enzyme-assisted sequencing technology that detects and quantifies mA by global adenosine deamination.

View Article and Find Full Text PDF

As one of the simplest polyols with chemical properties of alcohol, ethylene glycol is considered as a renewable energy source and a model fuel for pyrolysis oil. In this work, autoignition characteristics of ethylene glycol have been investigated behind reflected shock waves. Experiments were conducted at pressures of 2, 5, and 10 atm, equivalence ratios of 0.

View Article and Find Full Text PDF

Enterococcal cytolysin is a hemolytic virulence factor linked to human disease and increased patient mortality. Produced by pathogenic strains of , cytolysin is made up of two small, post-translationally modified peptides called CylL" and CylL". They exhibit a unique toxicity profile where lytic activity is observed for both mammalian cells and Gram-positive bacteria that is dependent on the presence of both peptides.

View Article and Find Full Text PDF

Lanthipeptides are characterized by thioether crosslinks formed by post-translational modifications. The cyclization process that favors a single ring pattern over many other possible ring patterns has been the topic of much speculation. Recent studies suggest that for some systems the cyclization pattern and stereochemistry is determined not by the enzyme, but by the sequence of the precursor peptide.

View Article and Find Full Text PDF

CylA is a subtilisin-like protein belonging to a recently expanded serine protease family related to class II lanthipeptide biosynthesis. As a leader peptidase, CylA is responsible for maturation of the enterococcal cytolysin, a lantibiotic important for Enterococcus faecalis virulence. In vitro reconstitution of CylA reveals that it accepts both linear and modified cytolysin peptides with a preference for cyclized peptides.

View Article and Find Full Text PDF

A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG.

View Article and Find Full Text PDF

We present two CRISPR-mediated analog multi-event recording apparatus (CAMERA) systems that use base editors and Cas9 nucleases to record cellular events in bacteria and mammalian cells. The devices record signal amplitude or duration as changes in the ratio of mutually exclusive DNA sequences (CAMERA 1) or as single-base modifications (CAMERA 2). We achieved recording of multiple stimuli in bacteria or mammalian cells, including exposure to antibiotics, nutrients, viruses, light, and changes in Wnt signaling.

View Article and Find Full Text PDF

Programmable sequence-specific genome editing agents such as CRISPR-Cas9 have greatly advanced our ability to manipulate the human genome. Although canonical forms of genome-editing agents and programmable transcriptional regulators are constitutively active, precise temporal and spatial control over genome editing and transcriptional regulation activities would enable the more selective and potentially safer use of these powerful technologies. Here, by incorporating ligand-responsive self-cleaving catalytic RNAs (aptazymes) into guide RNAs, we developed a set of aptazyme-embedded guide RNAs that enable small molecule-controlled nuclease-mediated genome editing and small molecule-controlled base editing, as well as small molecule-dependent transcriptional activation in mammalian cells.

View Article and Find Full Text PDF

Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPs formed by the addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb).

View Article and Find Full Text PDF

The final step of lanthipeptide biosynthesis involves the removal of leader peptides by dedicated proteases. characterization of LicP, a class II LanP protease involved in the biosynthesis of the lantibiotic lichenicidin, revealed a self-cleavage step that removes 100 amino acids from the N-terminus. The 2.

View Article and Find Full Text PDF

The enterococcal cytolysin is a virulence factor consisting of two post-translationally modified peptides that synergistically kill human immune cells. Both peptides are made by CylM, a member of the LanM lanthipeptide synthetases. CylM catalyzes seven dehydrations of Ser and Thr residues and three cyclization reactions during the biosynthesis of the cytolysin large subunit.

View Article and Find Full Text PDF

Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example in which the substrate controls the stereoselectivity of an enzyme-catalysed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by a cysteine attack on dehydrated Ser and Thr residues.

View Article and Find Full Text PDF

Wnt-β-catenin (β-catenin is also known as CTNNB1 in human) signaling through the β-catenin-TCF complex plays crucial roles in tissue homeostasis. Wnt-stimulated β-catenin-TCF complex accumulation in the nucleus regulates cell survival, proliferation and differentiation through the transcription of target genes. Compared with their levels in G1, activation of the receptor LRP6 and cytosolic β-catenin are both upregulated in G2 cells.

View Article and Find Full Text PDF

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a growing class of natural products that are found in all domains of life. These compounds possess vast structural diversity and have a wide range of biological activities, promising a fertile ground for exploring novel natural products. One challenging aspect of RiPP research is the difficulty of structure determination due to their architectural complexity.

View Article and Find Full Text PDF

The enterococcal cytolysin is a two-component lantibiotic of unknown structure with hemolytic activity that is important for virulence. We prepared cytolysin by coexpression of each precursor peptide with the synthetase CylM in Escherichia coli and characterized its structure. Unexpectedly, cytolysin is to our knowledge the first example of a lantibiotic containing lanthionine and methyllanthionine structures with different stereochemistries in the same peptide.

View Article and Find Full Text PDF

Prochlorosins make up a class of secondary metabolites produced by strains of Prochlorococcus, single-cell, planktonic marine cyanobacteria. These polycyclic peptides contain lanthionine and methyllanthionine residues that result in thioether cross-links. In Prochlorococcus MIT9313, a single enzyme, ProcM, catalyzes the posttranslational modification of 29 linear peptide substrates to generate a library of highly diverse cyclic peptides.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm01ptuir6ktbukjlvk3jfpea1nddumj8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once