Publications by authors named "Weixiang Tao"

Osmotic energy, often referred to as "blue energy", is the energy generated from the mixing of solutions with different salt concentrations, offering a vast, renewable, and environmentally friendly energy resource. The efficacy of osmotic power production considerably relies on the performance of the transmembrane process, which depends on ionic conductivity and the capability to differentiate between positive and negative ions. Recent advancements have led to the development of membrane materials featuring precisely tailored ion transport nanochannels, enabling high-efficiency osmotic energy harvesting.

View Article and Find Full Text PDF

Removal of high toxic Cr(VI) with solar plays an important role in improving water pollution, but is facing a dilemma of developing excellent photocatalysts with high conversion efficiency and low cost. Different from traditional nano-structuring, this work focuses on the interfacial hybridization by considering the intrinsic difference in bonding interaction. Herein, we intentionally make some layered black phosphorus (BP) sheets with Van der Waals interaction to bond with ZnO surfaces, in which some additional electron channels can be formed by this multilevel atomic hybridization to accelerate carrier transfer and separation.

View Article and Find Full Text PDF

While acidic oxygen evolution reaction plays a critical role in electrochemical energy conversion devices, the sluggish reaction kinetics and poor stability in acidic electrolyte challenges materials development. Unlike traditional nano-structuring approaches, this work focuses on the structural symmetry breaking to rearrange spin electron occupation and optimize spin-dependent orbital interaction to alter charge transfer between catalysts and reactants. Herein, we propose an atomic half-disordering strategy in multistage-hybridized BiErRuO pyrochlores to reconfigure orbital degeneracy and spin-related electron occupation.

View Article and Find Full Text PDF