Embryonic axis formation is essential for patterning and morphogenesis in vertebrates and is tightly regulated by the dorsal organizer. Previously, we demonstrated that maternally derived Huluwa (Hwa) acts as a dorsal determinant, dictating axis formation by activating β-catenin signaling in zebrafish and Xenopus. However, the mechanism of activation and fine regulation of the Hwa protein remains unclear.
View Article and Find Full Text PDFRandomized controlled trials (RCTs) are the gold standard for clinical research but may not accurately reflect the impact of medicines in real-world settings. Supplementing RCTs with insights from real-world data (RWD) can address known limitations by including more diverse patient populations, additional types of sites-of-care, and practices more representative of the care most people receive. One current challenge in using RWD is the lack of an algorithmic approach to identifying outcomes.
View Article and Find Full Text PDFB═O multiple bonds are fundamentally important owing to the unique property of B and its potential as a tool in catalysis. Herein by means of DFT calculations, we investigated the in situ generation of transient -B═O species in the nonmetallic inorganic boron oxides and demonstrated its superior ability to capture alkoxyl radicals under the conditions of oxidative dehydrogenation of propane (ODHP). Boron-containing materials are emerging as promising catalysts for ODHP, while an extensive understanding of the underlying mechanisms remains challenging.
View Article and Find Full Text PDFAs the third largest global food crop, potato plays an important role in ensuring food security. However, it is particularly sensitive to high temperatures, which seriously inhibits its growth and development, thereby reducing yield and quality and severely limiting its planting area. Therefore, rapid, and high-throughput screening for high-temperature response genes is highly significant for analyzing potato high-temperature tolerance molecular mechanisms and cultivating new high-temperature-tolerant potato varieties.
View Article and Find Full Text PDFThe yield and quality of potatoes, an important staple crop, are seriously threatened by high temperature and drought stress. In order to deal with this adverse environment, plants have evolved a series of response mechanisms. However, the molecular mechanism of potato's response to environmental changes at the translational level is still unclear.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is a symptomatic disease involed multi-stage program. Here, we elucidated the molecular mechanism of LncTUG1 in the regulation of HCC evolvement. And that may in all likelyhood supply a innovative latent target for HCC's diagnoses and prognosis.
View Article and Find Full Text PDFCan J Gastroenterol Hepatol
October 2022
Aims: In this report, it was investigated that hepatoma cells can cause downregulation of cytotoxic T lymphocyte (CTL) function and tea polyphenols (TPs) can reverse downregulation of CTL function.
Methods: The expression of GRP78, PD-1, and TIM-3 was detected by western blotting in CTLL-2 cocultured with Hepa1-6 cells. Moreover, perforin (PRF1) and granzyme B (GzmB) protein levels and ER morphology were examined by ELISA and TEM, respectively.
Front Biosci (Landmark Ed)
August 2022
Background: Metabolic activities of tumor cells lead to a depletion of nutrients within the tumor microenvironment, which results in the dysfunction of infiltrating T cells. Here, we explored how glutamine (gln) metabolism, which is essential for biosynthesis and cellular function, can affect the functions of cytotoxic T lymphocytes (CTLs).
Methods: Activated CTLs were co-cultured with hepatoma cells.
Can J Gastroenterol Hepatol
August 2021
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is an aggressive tumor with a high mortality rate because of the limited systemic and locoregional treatment modalities. The development and progression of HCC depend on epigenetic changes that result in the activation or inhibition of some signaling pathways. The mTOR signaling pathway is essential for many pathophysiological processes and is considered a major regulator of cancer.
View Article and Find Full Text PDFLarge-sized single-crystal two-dimensional (2D) perovskites are highly desirable owing to their fundamental properties and intriguing ability to boost devices. Herein, 2-phenylethylammonium lead bromide [(PEA)PbBr] single crystals, which are a violet-light-emitting 2D perovskite material, with typical lateral sizes of about one centimeter were successfully grown using a seeded solution method. The single-crystal plates showed a well-defined shape (rectangle or hexagon), a natural thickness (300-500 μm) similar to that of conventional silicon and InP wafers, a large aspect ratio of ∼20, and a smooth surface (root mean square, ∼0.
View Article and Find Full Text PDFInherited loss-of-function mutations in the tumor suppressor gene are associated with a high risk of ovarian cancer in the Chinese population. The current case report discusses a novel heterozygous insertion in gene, c.3195_3196insA, in a 54-year-old Chinese female with hereditary ovarian cancer.
View Article and Find Full Text PDFHereditary breast cancer is an autosomal dominant syndrome caused by germ-line mutations in the human breast cancer genes, and . Mutations in either or are the major causes of familial and early-onset breast cancer. The present study investigated a 33-year-old Chinese female patient with breast cancer using targeted next generation sequencing.
View Article and Find Full Text PDFWe adopt an acetone vapour-assisted method to grow high quality single-crystalline microplates of two-dimensional (2D) perovskite, 2-phenylethylammonium lead bromide [(CHCHNH)PbBr]. The microplates, converted from the spin-coated films, are well-defined rectangles. Temperature dependent photoluminescence (PL) spectroscopy shows that the band gap PL is enhanced markedly with increasing temperature up to 218 K, accompanied by the quenching of the PL related to the trap states, which perhaps results from the exciton-phonon couplings.
View Article and Find Full Text PDFWe exploit distributed optoelectronic properties enabled by graphene Bragg gratings (GBGs) to realize a hybrid single-mode laser on silicon. This hybrid laser achieves single-mode, continuous-wave operation at 1540 nm with a remarkable side-mode suppression ratio of 48 dB, benefitting from the coupling of the GBGs. These results suggest that graphene thin films can be used as an essential and cost-saving component for hybrid photonic integration on silicon.
View Article and Find Full Text PDFA four-wavelength silicon hybrid laser array operating at room temperature is realized by evanescently coupling the optical gain of InGaAsP multi-quantum wells to the silicon waveguides of varying widths and patterned with distributed feedback gratings based on selective-area metal bonding technology. The lasers have emission peaks between 1539.9 and 1546.
View Article and Find Full Text PDFInGaAs/GaAs multiple quantum well (MQW)-depleted optical thyristor lasers operating at 1.06 μm with a waveguide-type PiNiN structure is presented for the first time. The optical thyristor lasers clearly show nonlinear S-shaped current-voltage and lasing characteristics.
View Article and Find Full Text PDFA concise gold-catalyzed method for the preparation of anthracenes from o-alkynyldiarylmethanes has been developed. Under mild reaction conditions, versatile anthracene derivatives were formed in moderate to good yields. The high flexibility, broad substrate scope, and mild nature of this reaction render it a viable alternative for the synthesis of anthracenes.
View Article and Find Full Text PDFObjectives: Accumulating evidence suggested that dysregulation of cholesterol homeostasis might be a major etiologic factor in initiating and promoting neurodegeneration in Alzheimer's disease (AD). ATP-binding cassette transporter A1 (ABCA1), hepatic lipase (HL, coding genes named LIPC) and cholesteryl ester transfer protein (CETP) are important components of high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT) implicated in atherosclerosis and neurodegenerative diseases. In the present study, we will investigate the possible association of several common polymorphisms (ABCA1R219K, CETPTaqIB and LIPC-250 G/A) with susceptibility to AD and plasma lipid levels.
View Article and Find Full Text PDF