Bovine respiratory disease (BRD) is the most common disease in beef cattle and leads to considerable economic losses in both beef and dairy cattle. It is important to uncover the molecular mechanisms underlying BRD and to identify biomarkers for early identification of BRD cattle in order to address its impact on production and welfare. In this study, a longitudinal transcriptomic analysis was conducted using blood samples collected from 24 beef cattle at three production stages in the feedlot: 1) arrival (Entry group); 2) when identified as sick (diagnosed as BRD) and separated for treatment (Pulled); 3) prior to marketing (Close-out, representing healthy animals).
View Article and Find Full Text PDFHuman Waardenburg syndrome 2A (WS2A) is a dominant hearing loss (HL) syndrome caused by mutations in the microphthalmia-associated transcription factor (MITF) gene. In mouse models with MITF mutations, WS2A is transmitted in a recessive pattern, which limits the study of hearing loss (HL) pathology. In the current study, we performed ENU (ethylnitrosourea) mutagenesis that resulted in substituting a conserved lysine with a serine (p.
View Article and Find Full Text PDFN-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) can post-transcriptionally regulate gene expression and have been shown to be critical regulators to the fine-tuning of epithelial immune responses. However, the role of miRNAs in bovine responses to E. coli and S.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are small non-coding RNAs found to regulate several biological processes including adipogenesis. Understanding adipose tissue regulation is critical for beef cattle as fat is an important determinant of beef quality and nutrient value. This study analyzed the association between genomic context characteristics of miRNAs with their expression and function in bovine adipose tissue.
View Article and Find Full Text PDFAdipose tissue plays a critical role in energy homeostasis and metabolism. There is sparse understanding of the molecular regulation at the protein level of bovine adipose tissues, especially within different fat depots under different nutritional regimes. The objective of this study was to analyze the differences in protein expression between bovine subcutaneous and visceral fat depots in steers fed different diets and to identify the potential regulatory molecular mechanisms of protein expression.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are a class of molecular regulators found to participate in numerous biological processes, including adipogenesis in mammals. This study aimed to evaluate the differences of miRNA expression between bovine subcutaneous (backfat) and visceral fat depots (perirenal fat) and the dietary effect on miRNA expression in these fat tissues.
Methodology/principal Findings: Fat tissues were collected from 16 Hereford×Aberdeen Angus cross bred steers (15.
Adipogenesis, the complex development from preadipocytes or mesenchymal stem cells to mature adipocytes, is essential for fat formation and metabolism of adipose tissues in mammals. It has been reported to be regulated by hormones and various adipogenic transcription factors which are expressed as a transcriptional cascade promoting adipocyte differentiation, leading to the mature adipocyte phenotype. Recent findings indicate that microRNAs (miRNAs), a family of small RNA molecules of approximately 22 nucleotides in length, are involved in the regulatory network of many biological processes, including cell differentiation, through post-transcriptional regulation of transcription factors and/or other genes.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs), a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis).
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) are a family of approximately 22 nucleotide small RNA molecules which regulate gene expression by fully or partially binding to their complementary sequences in mRNAs or promoters. A large number of miRNAs and their expression patterns have been reported in human, mouse and rat. However, miRNAs and their expression patterns in live stock species such as beef cattle are not well studied.
View Article and Find Full Text PDFAvian infectious bronchitis virus (AIBV) is classified as a member of the genus coronavirus in the family coronaviridae. The enveloped virus has a positive-sense, single-stranded RNA genome of approximately 28 kilo-bases, which has a 5' cap structure and 3' polyadenylation tract. The complete genome sequence of infectious bronchitis virus (IBV), , was determined by cloning sequencing and primer walking.
View Article and Find Full Text PDFSARS coronavirus is an RNA virus whose replication is error-prone, which provides possibility for escape of host defenses, and even leads to evolution of new viral strains during the passage or the transmission. Lots of variations have been detected among different SARS-CoV strains. And a study on these variations is helpful for development of efficient vaccine.
View Article and Find Full Text PDF