Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers.
View Article and Find Full Text PDFPregnant women exposed to polycyclic aromatic hydrocarbons (PAHs) are at increased risk for premature delivery. Premature infants often require supplemental oxygen, a known risk factor for bronchopulmonary dysplasia (BPD). Cytochrome P450 (CYP) enzymes have been implicated in hyperoxic lung injury.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2023
Growth differentiation factor 15 (GDF15) is a divergent member of the transforming growth factor-β (TGF-β) superfamily, and its expression increases under various stress conditions, including inflammation, hyperoxia, and senescence. GDF15 expression is increased in neonatal murine bronchopulmonary dysplasia (BPD) models, and GDF15 loss exacerbates oxidative stress and decreases cellular viability in vitro. Our overall hypothesis is that the loss of GDF15 will exacerbate hyperoxic lung injury in the neonatal lung in vivo.
View Article and Find Full Text PDFOxygen supplementation is life saving for premature infants and for COVID-19 patients but can induce long-term pulmonary injury by triggering inflammation, with xenobiotic-metabolizing CYP enzymes playing a critical role. Murine studies showed that CYP1B1 enhances, while CYP1A1 and CYP1A2 protect from, hyperoxic lung injury. In this study we tested the hypothesis that Cyp1b1-null mice would revert hyperoxia-induced transcriptomic changes observed in WT mice at the transcript and pathway level.
View Article and Find Full Text PDFNumerous human and animal studies have reported positive correlation between carcinogen-DNA adduct levels and cancer occurrence. Therefore, attenuation of DNA adduct levels would be expected to suppress tumorigenesis. In this investigation, we report that the antioxidants omega 3-fatty acids, which are constituents of fish oil (FO), significantly decreased DNA adduct formation by polycyclic aromatic hydrocarbons (PAHs).
View Article and Find Full Text PDFLung cancer has the second highest incidence and highest mortality compared to all other cancers. Polycyclic aromatic hydrocarbon (PAH) molecules belong to a class of compounds that are present in tobacco smoke, diesel exhausts, smoked foods, as well as particulate matter (PM). PAH-derived reactive metabolites are significant contributors to lung cancer development.
View Article and Find Full Text PDFBackground: Acute respiratory distress syndrome (ARDS) leads to progressive lung injury, which significantly impacts patient morbidity and mortality but may differ clinically between the sexes. Cytochrome P450 (CYP) 1A enzymes are protective against hyperoxic lung injury and may contribute to sex-dependent pathology. NRF2 is a critical transcriptional regulator of antioxidants and loss of NRF2 leads to severe hyperoxic lung injury and mortality in mice.
View Article and Find Full Text PDFIn 2019, lung cancer was estimated to be the leading cause of cancer deaths in humans. Polycyclic aromatic hydrocarbons (PAHs) are known to increase the risk of lung cancer. PAHs are metabolized by the cytochrome P450 (CYP)1A subfamily, comprised of the CYP1A1 and 1A2 monooxygenases.
View Article and Find Full Text PDFCross talk between the intestinal microbiome and the lung and its role in lung health remains unknown. Perinatal exposure to antibiotics disrupts the neonatal microbiome and may have an impact on the preterm lung. We hypothesized that perinatal antibiotic exposure leads to long-term intestinal dysbiosis and increased alveolar simplification in a murine hyperoxia model.
View Article and Find Full Text PDFThe preterm birth (PTB) rate in Harris County, Texas, exceeds the U.S. rate (11.
View Article and Find Full Text PDFCytochrome P450 (CYP)3A is the most abundant CYP enzyme in the human liver, and a functional impairment of this enzyme leads to unanticipated adverse reactions and therapeutic failures; these reactions result in the early termination of drug development or the withdrawal of drugs from the market. The transcriptional regulation mechanism of the Cyp3a gene is not fully understood and requires a thorough investigation. We mapped the transcriptome of the Cyp3a gene in a mouse model.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2019
Premature male neonates are at a greater risk of developing bronchopulmonary dysplasia (BPD). The reasons underlying sexually dimorphic outcomes in premature neonates are not known. The role of miRNAs in mediating sex biases in BPD is understudied.
View Article and Find Full Text PDFSupplemental oxygen is a life-saving intervention administered to individuals suffering from respiratory distress, including adults with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite the clinical benefit, supplemental oxygen can create a hyperoxic environment that increases reactive oxygen species, oxidative stress, and lung injury. We have previously shown that cytochrome P450 (CYP)1A enzymes decrease susceptibility to hyperoxia-induced lung injury.
View Article and Find Full Text PDFQuercetin (QU) is one of the most common flavonoids that are present in a wide variety of fruits, vegetables, and beverages. This compound possesses potent anti-inflammatory and anti-oxidant properties. Supplemental oxygen is routinely administered to premature infants with pulmonary insufficiency.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
December 2017
Bronchopulmonary dysplasia (BPD) is characterized by impaired alveolar secondary septation and vascular growth. Exposure to high concentrations of oxygen (hyperoxia) contributes to the development of BPD. The male sex is considered an independent risk factor for the development of BPD.
View Article and Find Full Text PDFMale premature neonates are more susceptible than females to the development of bronchopulmonary dysplasia (BPD). The reasons underlying sexually dimorphic outcomes in premature neonates are not known. GDF15 (Growth and differentiation factor 15) is a secreted cytokine and plays a role in cell proliferation, apoptosis, and angiogenesis.
View Article and Find Full Text PDFHyperoxia contributes to lung injury in experimental animals and diseases such as acute respiratory distress syndrome in humans. Cytochrome P450 (CYP)1A enzymes are protective against hyperoxic lung injury (HLI). The molecular pathways and differences in gene expression that modulate these protective effects remain largely unknown.
View Article and Find Full Text PDFProlonged hyperoxia contributes to bronchopulmonary dysplasia (BPD) in preterm infants. β-Naphthoflavone (BNF) is a potent inducer of cytochrome P450 (CYP)1A enzymes, which have been implicated in hyperoxic injuries in adult mice. In this investigation, we tested the hypothesis that newborn mice lacking the Cyp1a1 gene would be more susceptible to hyperoxic lung injury than wild-type (WT) mice and that postnatal BNF treatment would rescue this phenotype by mechanisms involving CYP1A and/or NAD(P)H quinone oxidoreductase (NQO1) enzymes.
View Article and Find Full Text PDFAryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1).
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2016
Male sex is considered an independent predictor for the development of bronchopulmonary dysplasia (BPD) after adjusting for other confounders. BPD is characterized by an arrest in lung development with marked impairment of alveolar septation and vascular development. The reasons underlying sexually dimorphic outcomes in premature neonates are not known.
View Article and Find Full Text PDFExposure to hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. We observed that aryl hydrocarbon receptor (AhR) signaling protects newborn mice and primary fetal human pulmonary microvascular endothelial cells (HPMECs) against hyperoxic injury. Additionally, a recent genome-wide transcriptome study in a newborn mouse model of BPD identified AhR as a key regulator of hyperoxia-induced gene dysregulation.
View Article and Find Full Text PDFEmerging evidence indicates that the aryl hydrocarbon receptor (AhR) plays a crucial role in normal physiologic homeostasis. Additionally, aberrant AhR signaling leads to several pathologic states in the lung and liver. Activation of AhR transcriptionally induces phase I (CYP1A) detoxifying enzymes.
View Article and Find Full Text PDF