Phys Rev E Stat Nonlin Soft Matter Phys
March 2015
We explore the crystallization of charged colloidal particles in a nonpolar solvent mixture. We simultaneously charge the particles and add counterions to the solution with aerosol-OT (AOT) reverse micelles. At low AOT concentrations, the charged particles crystallize into body-centered-cubic (bcc) or face-centered-cubic (fcc) Wigner crystals; at high AOT concentrations, the increased screening drives a thus far unobserved reentrant melting transition.
View Article and Find Full Text PDFBackground: Domperidone is widely prescribed in patients with gastrointestinal disorders but some cardiac adverse effects have been recently reported.
Aim: To evaluate the risk of QT prolongation, ventricular arrhythmias and sudden cardiac death associated with the use of oral domperidone in adults without cancer.
Material And Methods: Systematic searches in MEDLINE, LILACS, SciELO, the Cochrane Library and regulatory agencies websites were performed, followed by a manual search of cited references.
Assembling inorganic nanomaterials on graphene is of interest in the development of nanodevices and nanocomposite materials, and the ability to align such inorganic nanomaterials on the graphene surface is expected to lead to improved functionalities, as has previously been demonstrated with organic nanomaterials epitaxially aligned on graphitic surfaces. However, because graphene is chemically inert, it is difficult to precisely assemble inorganic nanomaterials on pristine graphene. Previous techniques based on dangling bonds of damaged graphene, intermediate seed materials and vapour-phase deposition at high temperature(,) have only formed randomly oriented or poorly aligned inorganic nanostructures.
View Article and Find Full Text PDFThe semiflexible polymers filamentous actin (F-actin) and intermediate filaments (IF) both form complex networks within the cell, and together are key determinants of cellular stiffness. While the mechanics of F-actin networks together with stiff microtubules have been characterized, the interplay between F-actin and IF networks is largely unknown, necessitating the study of composite networks using mixtures of semiflexible biopolymers. We employ bulk rheology in a simplified in vitro system to uncover the fundamental mechanical interactions between networks of the 2 semiflexible polymers, F-actin and vimentin IF.
View Article and Find Full Text PDFWe use droplet microfluidics to produce monodisperse elastomeric microbubbles consisting of gas encapsulated in a polydimethylsiloxane shell. These microbubbles withstand large, repeated deformations without rupture. We perform μN-scale compression tests on individual microbubbles and find their response to be highly dependent on the shell permeability; during deformation, the pressure inside impermeable microbubbles increases, resulting in an exponential increase in the applied force.
View Article and Find Full Text PDFThe assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering.
View Article and Find Full Text PDFPrevention of undesired leakage of encapsulated materials prior to triggered release presents a technological challenge for the practical application of microcapsule technologies in agriculture, drug delivery, and cosmetics. A microfluidic approach is reported to fabricate perfluoropolyether (PFPE)-based microcapsules with a high core-shell ratio that show enhanced retention of encapsulated actives. For the PFPE capsules, less than 2% leakage of encapsulated model compounds, including Allura Red and CaCl2 , over a four week trial period is observed.
View Article and Find Full Text PDFElectrolyte gating of complex oxides enables investigation of electronic phase boundaries and collective response to strong electric fields. The origin of large conductance modulations and associated emergent properties in such field effect structures is a matter of intense study due to competing contributions from electrostatic (charge accumulation) and electrochemical (crystal chemistry changes) effects. Vanadium dioxide (VO2) is a prototypical correlated insulator that shows an insulator-to-metal transition at ∼67 °C and recent studies have noted a vast range of electronic effects in electric double-layer transistors (EDLT).
View Article and Find Full Text PDFIntermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These 'rod' particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, that is, bending and stretching to a considerable degree, both in vitro and in the cell.
View Article and Find Full Text PDFPlatelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production.
View Article and Find Full Text PDFWe present a new microfluidic method to coalesce pairs of surfactant-stabilized water-in-fluorocarbon oil droplets. We achieve this through the local addition of a poor solvent for the surfactant, perfluorobutanol, which induces cohesion between droplet interfaces causing them to merge. The efficiency of this technique is comparable to existing techniques providing an alternative method to coalesce pairs of droplets.
View Article and Find Full Text PDFInterfacial polymerization techniques offer a versatile route for microcapsule synthesis. We designed a microfluidic process to synthesize monodisperse polyurea microcapsules (PUMCs); the microcapsules are formed by an interfacial polymerization of isocyanate dissolved in the oil and an amine dissolved in water. We measure the mechanical properties of the capsule as well as transport properties through the membrane using two microfluidic methods.
View Article and Find Full Text PDFHigh mutation rates and short replication times lead to rapid evolution in RNA viruses. New tools for high-throughput culture and analysis of viral phenotypes will enable more effective studies of viral evolutionary processes. A water-in-oil drop microfluidic system to study virus-cell interactions at the single event level on a massively parallel scale is described here.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2015
Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet.
View Article and Find Full Text PDFNanofibrillar forms of proteins were initially recognized in the context of pathology, but more recently have been discovered in a range of functional roles in nature, including as active catalytic scaffolds and bacterial coatings. Here we show that protein nanofibrils can be used to form the basis of monodisperse microgels and gel shells composed of naturally occurring proteins. We explore the potential of these protein microgels to act as drug carrier agents, and demonstrate the controlled release of four different encapsulated drug-like small molecules, as well as the component proteins themselves.
View Article and Find Full Text PDFWe here report a case of a patient diagnosed with human epithelial growth factor receptor 2 (HER2)-amplified esophageal adenocarcinoma. The patient responded well to trastuzumab-based chemotherapy initially, but progressed with liver metastases. Her treatment was then switched to dual HER2 blockade with both trastuzumab and lapatinib in combination with capecitabine.
View Article and Find Full Text PDFA new ultra-high-throughput screening assay for the detection of cellulase activity was developed based on microfluidic sorting. Cellulase activity is detected using a series of coupled enzymes leading to the formation of a fluorescent product that can be detected on a chip. Using this method, we have achieved up to 300-fold enrichments of the active population of cells and greater than 90% purity after just one sorting round.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2014
We perform a series of deformation experiments on a monodisperse, hard-sphere colloidal glass while simultaneously following the three-dimensional trajectories of roughly 50,000 individual particles with a confocal microscope. In each experiment, we deform the glass in pure shear at a constant strain rate [(1-5)×10(-5) s(-1)] to maximum macroscopic strains (5%-10%) and then reverse the deformation at the same rate to return to zero macroscopic strain. We also measure three-dimensional particle trajectories in an identically prepared quiescent glass in which the macroscopic strain is always zero.
View Article and Find Full Text PDFAims: To assess the association of the use of domperidone in infants with QTc interval prolongation and proarrhythmic events.
Methods: A systematic search of the scientific literature was conducted without any date or language restriction. The electronic database MEDLINE and the sources LILACS, ScIELO and Cochrane library were consulted.
The ability of low boiling point liquid perfluorocarbons (PFCs) to undergo a phase change from a liquid to a gas upon ultrasound irradiation makes PFC-based emulsions promising vehicles for triggered delivery of payloads. However, loading hydrophilic agents into PFC-based emulsions is difficult due to their insolubility in PFC. Here, we address this challenge by taking advantage of microfluidic technologies to fabricate double emulsions consisting of large aqueous cores and a perfluorohexane (PFH) shell, thus yielding high loading capacities for hydrophilic agents.
View Article and Find Full Text PDFWe use microfluidics to continuously produce monodisperse polyurea microcapsules (PUMCs) having either aqueous or nonaqueous cores. The microcapsule shells are formed by the reaction between an isocyanate, dissolved in oil, and an amine, dissolved in water, at the surface of oil-in-water or water-in-oil drops immediately as they are formed. Different microcapsule morphologies can be generated using our approach.
View Article and Find Full Text PDFNeisseria gonorrheae bacteria are the causative agent of the second most common sexually transmitted infection in the world. The bacteria move on a surface by means of twitching motility. Their movement is mediated by multiple long and flexible filaments, called type IV pili, that extend from the cell body, attach to the surface, and retract, thus generating a pulling force.
View Article and Find Full Text PDFThe application of an electric field to a suspension of charged particles can lead to the formation of patterns due to electrohydrodynamic instabilities which remain poorly understood. We elucidate this behavior by visualizing the dynamics of charged carbon black particles suspended in a nonpolar solvent in response to an electric field. As the particles are transported across a microfluidic channel, an instability occurs in which the initially uniform, rapidly advancing particle front develops fingers.
View Article and Find Full Text PDFIn experimental science, organisms are usually studied in isolation, but in the wild, they compete and cooperate in complex communities. We report a system for cross-kingdom communication by which bacteria heritably transform yeast metabolism. An ancient biological circuit blocks yeast from using other carbon sources in the presence of glucose.
View Article and Find Full Text PDFMolecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations.
View Article and Find Full Text PDF