Publications by authors named "Weiting Ye"

AI has been widely applied in scientific scenarios, such as robots performing chemical synthetic actions to free researchers from monotonous experimental procedures. However, there exists a gap between human-readable natural language descriptions and machine-executable instructions, of which the former are typically in numerous chemical articles, and the latter are currently compiled manually by experts. We apply the latest technology of pre-trained models and achieve automatic transcription between descriptions and instructions.

View Article and Find Full Text PDF

Electrochemical analysis has become a new method for plant analysis in recent years. It can not only collect signals of electrochemically active substances in plant tissues, but can also be used to identify plant species. At the same time, the signals of electrochemically active substances in plant tissues can also be used to investigate plant phylogeny.

View Article and Find Full Text PDF

Folate depletion causes chromosomal instability by increasing DNA strand breakage, uracil misincorporation, and defective repair. Folate mediated one-carbon metabolism has been suggested to play a key role in the carcinogenesis and progression of hepatocellular carcinoma (HCC) through influencing DNA integrity. Methylenetetrahydrofolate reductase (MTHFR) is the enzyme catalyzing the irreversible conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate that can control folate cofactor distributions and modulate the partitioning of intracellular one-carbon moieties.

View Article and Find Full Text PDF

It is widely accepted that buprenorphine maintenance treatment (BMT) with dosages above 8 mg daily is effective for patients with heroin use disorder. In this study, the authors evaluated the effectiveness of long-term BMT for heroin users in China, with dosages kept on a much smaller level. This is a retrospective observational study of 72 patients who had undergone detoxification and continued with buprenorphine maintenance between 2007 and 2016.

View Article and Find Full Text PDF

A functional group tolerant cobalt-catalyzed method for the intermolecular hydrofunctionalization of alkenes with oxygen- and nitrogen-based nucleophiles is reported. This protocol features a strategic use of hypervalent iodine(III) reagents that enables a mechanistic shift from conventional cobalt-hydride catalysis. Key evidence was found supporting a unique bimetallic-mediated rate-limiting step involving two distinct cobalt(III) species, from which a new carbon-heteroatom bond is formed.

View Article and Find Full Text PDF