Publications by authors named "Weitao Wu"

Article Synopsis
  • Boiling heat transfer is crucial in many industrial applications, but it presents challenges due to its chaotic nature, particularly in the early stages of bubble formation known as nucleation.
  • Molecular dynamics (MD) simulation has proven to be an effective tool for studying these boiling mechanisms at micro and nanoscale, although there are still uncertainties in understanding complex boiling processes.
  • This review synthesizes findings from 129 papers up to 2024, discusses fundamental MD concepts, identifies key factors affecting bubble nucleation, explores techniques to enhance boiling heat transfer, and highlights future challenges for MD simulations in this field.
View Article and Find Full Text PDF

The anti-nerve growth factor antibody class of drugs interrupts signaling by blocking NGF binding to TrkA receptors for the treatment of pain; however, this target class of drugs has been associated with serious adverse effects in the joints during clinical trials. DS002 is a novel anti-nerve growth factor antibody drug independently developed by Guangdong Dashi Pharmaceuticals. The main purpose of this study is to explore the correlation between DS002 and pain as well as cartilage and bone metabolism with the help of metabolomics technology and the principle of enzyme-linked reaction, and to examine whether DS002 will produce serious adverse effects in joints caused by its same target class of drugs, in order to provide more scientific basis for the safety and efficacy of DS002.

View Article and Find Full Text PDF

In multi-modal multi-agent trajectory forecasting, two major challenges have not been fully tackled: 1) how to measure the uncertainty brought by the interaction module that causes correlations among the predicted trajectories of multiple agents; 2) how to rank the multiple predictions and select the optimal predicted trajectory. In order to handle the aforementioned challenges, this work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules. Then we build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation.

View Article and Find Full Text PDF

Hemodynamics play a vital role for the risk of thrombosis in the left atrial appendage (LAA) and left atrium (LA) for patients with atrial fibrillation. Accurate prediction of hemodynamics in the LA can provide important guidance for assessing the risk of thrombosis in the LAA. Patient specificity is a crucial factor in representing the true hemodynamic fields.

View Article and Find Full Text PDF

Inlet boundary conditions (BC) are one of the uncertainties which may influence the prediction of flow field and hemolysis in blood pumps. This study investigated the influence of inlet BC, including the length of inlet pipe, type of inlet BC (mass flow rate or experimental velocity profile) and turbulent intensity (no perturbation, 5%, 10%, 20%) on the prediction of flow field and hemolysis of a benchmark centrifugal blood pump (the FDA blood pump) and a commercial axial blood pump (Heartmate II), using large-eddy simulation. The results show that the influence of boundary conditions on integral pump performance metrics, including pressure head and hemolysis, is negligible.

View Article and Find Full Text PDF

Objective: The present study aims to (1) investigate the prevalence of positive screening for depression among elderly people applying for admission to public nursing facilities in Shenzhen and (2) to explore the correlation between depression and activities of daily living (ADL) among the elderly.

Methods: Visual and hearing acuity, ADL (obtained using the Barthel index), cognition and depression levels, and communication and social interaction skills were assessed in all elderly adults aged ≥60 years who applied for admission to public nursing facilities in Shenzhen between April 1, 2018, and December 31, 2019.

Results: A total of 1,113 elderly adults, 34.

View Article and Find Full Text PDF

The rheological behavior of gel propellants is crucial for their practical applications, especially in the rocket engine and ramjet fields. The thixotropic characteristics of gel propellants are an important component of their rheological properties and have a notable impact on their flow and injection process. However, most gel propellants contain rich, dynamic cross-linked network structures, which impart complex non-Newtonian fluid properties, and it is difficult to establish a unified mathematical model.

View Article and Find Full Text PDF

Cold atom experiments usually need a controllable and low-noise bias magnetic field to provide a quantization axis. Most labs need home-made stabilization of the field according to the actual setup, as commercially available power supply cannot directly satisfy their requirements. Here, by measuring the field fluctuations and active feedback modulating current supply of the applied magnetic field, we successfully demonstrate a field of 10.

View Article and Find Full Text PDF

Bispecific antibodies (BsAbs) are typically monoclonal antibody (mAb)-derived molecular entities engineered to bind to two distinct targets, including two antigens or two epitopes on the same antigen. When compared to parental monoclonal antibodies or combinational therapies, the generated BsAbs have the ability to bridge the two targets and thus may offer additional clinical benefits. Characterizing BsAbs' ability to bind to both targets simultaneously is critical for their biotherapeutic development.

View Article and Find Full Text PDF

Thrombosis under high-shear conditions is mediated by the mechanosensitive blood glycoprotein von Willebrand factor (vWF). vWF unfolds in response to strong flow gradients and facilitates rapid recruitment of platelets in flowing blood. While the thrombogenic effect of vWF is well recognized, its conformational response in complex flows has largely been omitted from numerical models of thrombosis.

View Article and Find Full Text PDF

Gel fuel potentially combines the advantages of solid fuel and liquid fuel due to its special rheological properties, which have essential impacts on the application of gel fuel in propulsion systems. In this paper, we study the rheological property of organic kerosene gel through a series of measurements on its viscosity as a function of the shear rate, temperature, and shear history. The measured datasets are then fitted with constitutive relationships between the viscosity and shear rate at three different levels: the power law shear-thinning model, the power law dependency on both the temperature and shear rate, and the thixotropic property.

View Article and Find Full Text PDF

In this paper, we numerically simulate the flow of blood in two benchmark problems: the flow in a sudden expansion channel and the flow through an idealized curved coronary artery with pulsatile inlet velocity. Blood is modeled as a suspension (a non-linear complex fluid) and the movement of the red blood cell (RBCs) is modeled by using a concentration flux equation. The viscosity of blood is obtained from experimental data.

View Article and Find Full Text PDF

An accurate representation of the flow field in blood pumps is important for the design and optimization of blood pumps. The primary turbulence modeling methods applied to blood pumps have been the Reynolds-averaged Navier-Stokes (RANS) or URANS (unsteady RANS) method. Large eddy simulation (LES) method has been introduced to simulate blood pumps.

View Article and Find Full Text PDF

von Willebrand Factor is a mechano-sensitive protein circulating in blood that mediates platelet adhesion to subendothelial collagen and platelet aggregation at high shear rates. Its hemostatic function and thrombogenic effect, as well as susceptibility to enzymatic cleavage, are regulated by a conformational change from a collapsed globular state to a stretched state. Therefore, it is essential to account for the conformation of the vWF multimers when modeling vWF-mediated thrombosis or vWF degradation.

View Article and Find Full Text PDF

Centrifugal blood pumps are usually designed with secondary flow paths to avoid flow dead zones and reduce the risk of thrombosis. Due to the secondary flow path, the intensity of secondary flows and turbulence in centrifugal blood pumps is generally very high. Conventional design theory is no longer applicable to centrifugal blood pumps with a secondary flow path.

View Article and Find Full Text PDF

Thromboembolic complications remain a central issue in management of patients on mechanical circulatory support. Despite the best practices employed in design and manufacturing of modern ventricular assist devices, complexity and modular nature of these systems often introduces internal steps and crevices in the flow path which can serve as nidus for thrombus formation. Thrombotic potential is influenced by multiple factors including the characteristics of the flow and surface chemistry of the biomaterial.

View Article and Find Full Text PDF

A kind of nanoparticle is developed for highly efficient chemodynamic therapy that only relies on the endogenous H2O2 of cancer cells. For this nanoparticle, high-molecular-weight DNA is used as the biocompatible carrier to load abundant Mn2+ ions. Therefore, the resultant Mn-DNA coordination nanoparticles can efficiently deliver and sensitively release Mn2+ in cancer cells, resulting in high toxicity through the Fenton-like reaction.

View Article and Find Full Text PDF

This study was undertaken to develop a numerical/computational simulation of von Willebrand Factor (vWF) - mediated platelet shear activation and deposition in an idealized stenosis. Blood is treated as a multi-constituent mixture comprised of a linear fluid component and a porous solid component (thrombus). Chemical and biological species involved in coagulation are modeled using a system of coupled convection-reaction-diffusion (CRD) equations.

View Article and Find Full Text PDF

Motivated by the complex rheological behaviors observed in small/micro scale blood vessels, such as the Fahraeus effect, plasma-skimming, shear-thinning, etc., we develop a non-linear suspension model for blood. The viscosity is assumed to depend on the volume fraction (hematocrit) and the shear rate.

View Article and Find Full Text PDF

This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS).

View Article and Find Full Text PDF

In this paper, we present a spatio-temporal mathematical model for simulating the formation and growth of a thrombus. Blood is treated as a multi-constituent mixture comprised of a linear fluid phase and a thrombus (solid) phase. The transport and reactions of 10 chemical and biological species are incorporated using a system of coupled convection-reaction-diffusion (CRD) equations to represent three processes in thrombus formation: initiation, propagation and stabilization.

View Article and Find Full Text PDF

Continuous flow ventricular assist devices (cfVADs) provide a life-saving therapy for severe heart failure. However, in recent years, the incidence of device-related thrombosis (resulting in stroke, device-exchange surgery or premature death) has been increasing dramatically, which has alarmed both the medical community and the FDA. The objective of this study was to gain improved understanding of the initiation and progression of thrombosis in one of the most commonly used cfVADs, the Thoratec HeartMate II.

View Article and Find Full Text PDF

This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han et al.

View Article and Find Full Text PDF

The blood flow pathway within a device, together with the biomaterial surfaces and status of the patient's blood, are well-recognized factors in the development of thrombotic deposition and subsequent embolization. Blood flow patterns are of particular concern for devices such as blood pumps (i.e.

View Article and Find Full Text PDF

It is known that in a vessel whose characteristic dimension (e.g., its diameter) is in the range of 20 to 500 microns, blood behaves as a non-Newtonian fluid, exhibiting complex phenomena, such as shear-thinning, stress relaxation, and also multi-component behaviors, such as the Fahraeus effect, plasma-skimming, etc.

View Article and Find Full Text PDF