Biochim Biophys Acta Mol Basis Dis
October 2023
Immune checkpoint inhibitors (ICIs) have revolutionized the current treatment landscape for cancer, yet the response rates of ICIs remain unmet. Synergistic with immunotherapy, low-dose radiotherapy (LDRT) has been demonstrated to activate anti-tumor immunity - a transition from traditional radiation therapy geared toward local radical treatment to a type of immunological adjuvant. As such, studies utilizing LDRT to enhance the efficacy of immunotherapy have been increasing preclinically and clinically.
View Article and Find Full Text PDFType I interferon (IFN-I) production is efficiently induced to ensure a potent innate immune response to viral infection. How this response can be enhanced, however, remains to be explored. Here, we identify a new cytoplasmic long non-coding RNA (lncRNA), lncLrrc55-AS, that drives a positive feedback loop to promote interferon regulatory factor 3 (IRF3) signaling and IFN-I production.
View Article and Find Full Text PDFUnlabelled: Dengue virus (DENV) is the most common mosquito-borne virus infecting humans and is currently a serious global health challenge. To establish infection in its host cells, DENV must subvert the production and/or antiviral effects of interferon (IFN). The aim of this study was to understand the mechanisms by which DENV suppresses IFN production.
View Article and Find Full Text PDFObjective: It has been well recognized that microRNA plays a role in the host-pathogen interaction network. The significance of microRNA in the regulation of dengue virus (DENV) replication, however, remains unknown. The objective of our study was to determine the biological function of miR-548g-3p in modulating the replication of dengue virus.
View Article and Find Full Text PDFInterferon-inducible transmembrane proteins 1, 2 and 3 (IFITM1, IFITM2 and IFITM3) have recently been identified as potent antiviral effectors that function to suppress the entry of a broad range of enveloped viruses and modulate cellular tropism independent of viral receptor expression. However, the antiviral effect and mechanisms of IFITMs in response to viral infections remain incompletely understood and characterized. In this work, we focused our investigation on the function of the extracellular IFITM3 protein.
View Article and Find Full Text PDFPLoS Negl Trop Dis
August 2014
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3'-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection.
View Article and Find Full Text PDFBackground: The World Health Organization (WHO) ranks respiratory tract infection (RTI) as the second leading cause of death worldwide for children under 5 years of age. The aim of this work was to evaluate the epidemiology characteristics of respiratory viruses found in children and adults with RTI from July 2009 to June 2012 in southern China.
Methods: In this work, a total of 14 237 nasopharyngeal swabs (14 237 patients from 25 hospitals) were analyzed, and seven respiratory viruses (influenza virus, respiratory syncytial virus, parainfluenza virus, adenovirus, human metapneumovirus, human coronavirus, human bocavirus) were detected using PCR/RT-PCR from nasopharyngeal swabs.
Three new phomoxanthone compounds, phomolactonexanthones A (1), B (2) and deacetylphomoxanthone C (3), along with five known phomoxanthones, including dicerandrol A (4), dicerandrol B (5), dicerandrol (6), deacetylphomoxanthone B (7) and penexanthone A (8), were isolated in the metabolites of the fungus Phomopsis sp. HNY29-2B, which was isolated from the mangrove plants. The structures of compounds 1-3 were established on the basis of spectroscopic analysis.
View Article and Find Full Text PDFBreast cancer remains a major health problem worldwide. While chemotherapy represents an important therapeutic modality against breast cancer, limitations in the clinical use of chemotherapy remain formidable because of chemoresistance. The HER2/PI-3K/Akt pathway has been demonstrated to play a causal role in conferring a broad chemoresistance in breast cancer cells and thus justified to be a target for enhancing the effects of anti-breast cancer chemotherapies, such as adriamycin (ADR).
View Article and Find Full Text PDF