Microorganisms carrying antimicrobial resistance genes are often found in greywater. As the reuse of greywater becomes increasingly needed, it is imperative to determine how greywater treatment impacts antimicrobial resistance genes (ARGs). Using qPCR and SmartChip™ qPCR, we characterized ARG patterns in greywater microbial communities before, during, and after treatment by a recirculating vertical flow constructed wetland.
View Article and Find Full Text PDFAcidimicrobium sp. strain A6 is a recently discovered autotrophic bacterium that is capable of oxidizing ammonium while reducing ferric iron and is relatively common in acidic iron-rich soils. The genome of Acidimicrobium sp.
View Article and Find Full Text PDFSci Total Environ
September 2023
Greywater often contains microorganisms carrying antimicrobial resistance genes (ARGs). Reuse of greywater thus potentially facilitates the enrichment and spread of multidrug resistance, posing a possible hazard for communities that use it. As water reuse becomes increasingly necessary, it is imperative to determine how greywater treatment impacts ARGs.
View Article and Find Full Text PDFCurr Opin Biotechnol
April 2023
Antibiotics and disinfectants have saved millions of human lives and cured uncountable animal diseases, but their activity is not limited to the site of application. Downstream, these chemicals become micropollutants, contaminating water at trace levels, resulting in adverse impacts on soil microbial communities and threatening crop health and productivity in agricultural settings and perpetuating the spread of antimicrobial resistance. Especially as resource scarcity drives increased reuse of water and other waste streams, considerable attention is needed to characterize the fate of antibiotics and disinfectants and to prevent or mitigate environmental and public health impacts.
View Article and Find Full Text PDFIndoor surfaces are paradoxically presumed to be both colonized by pathogens, necessitating disinfection, and "microbial wastelands." In these resource-poor, dry environments, competition and decay are thought to be important drivers of microbial community composition. However, the relative contributions of these two processes have not been specifically evaluated.
View Article and Find Full Text PDFAcidimicrobiaceae sp. strain A6 (A6), is an anaerobic autotrophic bacterium capable of oxidizing ammonium (NH) while reducing ferric iron and is also able to defluorinate PFAS under these growth conditions. A6 is exoelectrogenic and can grow in microbial electrolysis cells (MECs) by using the anode as the electron acceptor in lieu of ferric iron.
View Article and Find Full Text PDFSci Total Environ
January 2019
Acidimicrobiaceae sp. A6 (referred to as A6) was recently identified as playing a key role in the Feammox process (ammonium oxidation coupled to iron reduction). Two constructed wetlands (CW) were built and bioaugmented with A6 to determine if, under the right conditions, Feammox can be enhanced in CWs by having strata with higher iron content.
View Article and Find Full Text PDFsp. strain A6 (A6), from the phylum, was recently identified as a microorganism that can carry out anaerobic ammonium (NH) oxidation coupled to iron reduction, a process also known as Feammox. Being an iron-reducing bacterium, A6 was studied as a potential electrode-reducing bacterium that may transfer electrons extracellularly onto electrodes while gaining energy from NH oxidation.
View Article and Find Full Text PDFRare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized.
View Article and Find Full Text PDFBiotechnol Appl Biochem
July 2017
Lipase is one of the most widely used enzymes and plays an important role in biotechnological and industrial processes including food, paper, and oleochemical industries, as well as in pharmaceutical applications. However, its aqueous solubility and instability make its application relatively difficult and expensive. The immobilization technique is often used to improve lipase performance, and the strategy has turned out to be a promising method.
View Article and Find Full Text PDF