Conductive hydrogels (CHs) have shown promising potential applied as wearable or epidermal sensors owing to their mechanical adaptability and similarity to natural tissues. However, it remains a great challenge to develop an integrated hydrogel combining outstanding conductive, self-healing and biocompatible performances with simple approaches. In this work, we propose a "one-pot" strategy to synthesize multifunctional CHs by incorporating two-dimensional (2D) transition metal carbides/nitrides (MXenes) multi-layer nano-flakes as nanofillers into oxidized alginate and gelatin hydrogels to form the composite CHs with various MXene contents.
View Article and Find Full Text PDFThe interactions between light and plasmonic charge oscillations in conducting materials are important venues for realizing nanoscale light manipulations. Conventional metal-based plasmonic devices lack tunability due to the fixed material permittivities. Here, we show that reconfigurable plasmonic functionalities can be achieved using the spatially controlled phase transitions in strongly correlated oxide films.
View Article and Find Full Text PDFTo maximize the photovoltaic efficiency, it is highly desirable to enable the electricity conversion from low energy photons and to extract the excessive energy from hot carriers. Here we report a large photovoltage generation at the LaAlO/SrTiO interfaces from infrared photons with energies far below the oxide bandgaps. This effect is a result of the photoexcitation of hot carriers in metasurface electrical contacts and the subsequent thermoelectric charge separations by the interfacial two-dimensional electron gas (2DEG).
View Article and Find Full Text PDFWe report on carrier recombination within self-catalyzed InAs/InAlAs core-shell nanowires (NWs), disentangling recombination rates at the ends, sidewalls, and interior of the NWs. Ultrafast optical pump-probe spectroscopy measurements were performed from 77-293 K on the free-standing, variable-sized NWs grown on lattice-mismatched Si(111) substrates, independently varying NW length and diameter. We found NW carrier recombination in the interior is nontrivial compared to the surface recombination, especially at 293 K.
View Article and Find Full Text PDFHere, we demonstrate the nanoscale manipulations of two types of charge transfer to the LaAlO/SrTiO interfaces: one from surface adsorbates and another from oxygen vacancies inside LaAlO films. This method can be used to produce multiple insulating and metallic interface states with distinct carrier properties that are highly stable in air. By reconfiguring the patterning and comparing interface structures formed from different doping sources, effects of extrinsic and intrinsic material characters on the transport properties can be distinguished.
View Article and Find Full Text PDFWe report an oxygen surface adsorbates induced metal-insulator transition at the LaAlO3/SrTiO3 interfaces. The observed effects were attributed to the terminations of surface Al sites and the resultant electron-accepting surface states. By controlling the local oxygen adsorptions, we successfully demonstrated the nondestructive patterning of the interface two-dimensional electron gas (2DEG).
View Article and Find Full Text PDFEfficient trapping of the light in a photon absorber or a photodetector can improve its performance and reduce its cost. In this paper we investigate two designs for light-trapping in application to infrared absorption. Our numerical simulations demonstrate that nonabsorptive pyramids either located on top of an absorbing film or having embedded absorbing rods can efficiently enhance the absorption in the absorbing material.
View Article and Find Full Text PDF