Comput Struct Biotechnol J
October 2023
Synthetic lethal (SL) pairs are pairs of genes whose simultaneous loss-of-function results in cell death, while a damaging mutation of either gene alone does not affect the cell's survival. This makes SL pairs attractive targets for precision cancer therapies, as targeting the unimpaired gene of the SL pair can selectively kill cancer cells that already harbor the impaired gene. Limited by the difficulty of finding true SL pairs, especially on specific cell types, current computational approaches provide only limited insights because of overlooking the crucial aspects of cellular context dependency and mechanistic understanding of SL pairs.
View Article and Find Full Text PDFMetastatic propagation is the leading cause of death for most cancers. Prediction and elucidation of metastatic process is crucial for the treatment of cancer. Even though somatic mutations have been linked to tumorigenesis and metastasis, it is less explored whether metastatic events can be identified through genomic mutational signatures, which are concise descriptions of the mutational processes.
View Article and Find Full Text PDFCupric (Cu(II)) complexes in industrial wastewater are responsible for the failure of conventional alkaline precipitation, but the properties of cuprous (Cu(I)) complexes at alkaline circumstance have not been focused. This report proposed a novel strategy for the remediation of Cu(II)-complexed wastewater by coupling alkaline precipitation with green benign reductant, namely, hydroxylamine hydrochloride (HA). This remediation process (HA-OH) exhibits superior Cu removal efficiency that cannot be achieved with the same dosage of oxidants (3 mM).
View Article and Find Full Text PDFHaploid embryonic stem cells (haESCs) are derived from the inner cell mass of the haploid blastocyst, containing only one set of chromosomes. Extensive and accurate chromatin remodelling occurs during haESC derivation, but the intrinsic transcriptome profiles and chromatin structure of haESCs have not been fully explored. We profiled the transcriptomes, nucleosome positioning, and key histone modifications of four mouse haESC lines, and compared these profiles with those of other closely-related stem cell lines, MII oocytes, round spermatids, sperm, and mouse embryonic fibroblasts.
View Article and Find Full Text PDFAlthough sulfate radical-based advanced oxidation processes (SR-AOPs) have shown great potential for the efficient degradation of various organic contaminants, there is few research on the removal of organophosphorus pesticides (OPPs) through SR-AOPs. In this work, Co-doped FeO magnetic particles encapsulated by zirconium-based metal-organic frameworks (Co-FeO@UiO-66) were prepared and employed to activate peroxymonosulfate (PMS) for the elimination of fenitrothion (FNT) and the simultaneous in-situ adsorption of produced phosphate. The catalyst exhibited efficient catalytic performance, achieving above 90.
View Article and Find Full Text PDFTrophoblast stem cells (TSCs) are critical to mammalian embryogenesis by providing the cell source of the placenta. TSCs can be derived from trophoblast cells. However, the efficiency of TSC derivation from somatic cell nuclear transfer (NT) blastocysts is low.
View Article and Find Full Text PDFAdsorption using nanomaterials is considered an effective method for controlling the levels of toxic heavy metal in wastewater. Herein, a novel adsorbent, core-shell phase-transited lysozyme film-coated magnetic nanoparticles (FeO@SiO@PTL) for Hg(II) ions removal from aqueous solutions was explored via facile and fast phase transformation and self-assembly process of lysozyme. The physiochemical properties of FeO@SiO@PTL were investigated using various characterization techniques.
View Article and Find Full Text PDFUsing chloromethylated polystyrene resin, N,N-diethylaminoethyl methacrylate, and ethylene glycol dimethacrylate as support, functional monomer and cross-linker, respectively, the molecularly imprinted resin (MIR) and non-imprinted resin (NIR) were fabricated by the combination of atom transfer radical polymerization and surface imprinting technique for the selective adsorption of 4-hydroxybenzoic acid (4-HB) from aqueous solutions. The prepared adsorbents were characterized by N adsorption/desorption isotherms, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorption processes of the 4-HB with MIR and NIR followed pseudo-second-order kinetics, and the adsorption isotherms were appreciably described by the Langmuir model.
View Article and Find Full Text PDFThe development of an adsorbent with high adsorption ability and favorable cyclic regeneration performance for the removal of nitrate residues from wastewater is a task of vital importance. To this end, polyacrylonitrile fiber (PANF) was modified with polyethyleneimine (PEI), and alkyl groups were then introduced around the active amine groups to prepare three polymer-based anion exchange fibers (PAN-PEI-3C, PAN-PEI-5C, and PAN-PEI-8C). The novel fibers were characterized using techniques such as scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).
View Article and Find Full Text PDFGastric cancer is the fourth most common cancer and the second most frequent cause of cancer death worldwide. Chemotherapy is an important treatment. However, traditional chemotherapy drugs have low bioavailability and targeting ability.
View Article and Find Full Text PDFAs a transcription factor, MYCN regulates myriad target genes including the histone chaperone FACT. Moreover, FACT and MYCN expression form a forward feedback loop in neuroblastoma. It is unclear whether MYCN is involved in chromatin remodeling in neuroblastoma through regulation of its target genes.
View Article and Find Full Text PDFFerroptosis is an outcome of metabolic disorders and closely linked to liver cancer. However, the mechanism underlying the fine regulation of ferroptosis in liver cancer remains unclear. Here, we have identified two categories of genes: ferroptosis up-regulated factors (FUF) and ferroptosis down-regulated factors (FDF), which stimulate and suppress ferroptosis by affecting the synthesis of GSH.
View Article and Find Full Text PDFSome types of circular RNA (circRNA) are aberrantly expressed in human diseases including hepatocellular carcinoma (HCC). However, its regulation mechanism and diagnostic roles are largely unknown. Here, we identified that circRNA_104075 (circ_104075) was highly expressed in HCC tissues, cell lines and serum.
View Article and Find Full Text PDFAndrogenetic haploid embryonic stem cells (AG-haESCs) hold great promise for exploring gene functions and generating gene-edited semi-cloned (SC) mice. However, the high incidence of self-diploidization and low efficiency of SC mouse production are major obstacles preventing widespread use of these cells. Moreover, although SC mice generation could be greatly improved by knocking out the differentially methylated regions of two imprinted genes, 50% of the SC mice did not survive into adulthood.
View Article and Find Full Text PDFPolydopamine-modified granule organo-attapulgite adsorbent (PDA-GOAT) was facilely prepared via a dip-coating approach. The samples were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Surface area and pore size were calculated from the Brunauer-Emmett-Teller method by N adsorption-desorption isotherm.
View Article and Find Full Text PDFAlthough YAP-dependent transcription is closely associated with liver tumorigenesis, the mechanism by which YAP maintains its function is poorly understood. Here, we show that TFCP2 is required for YAP-dependent transcription and liver malignancy. Mechanistically, YAP function is stimulated by TFCP2 via a WW-PSY interaction.
View Article and Find Full Text PDFHepatic ischemia-reperfusion injury is a dynamic process consisting of two stages: ischemia and reperfusion, and triggers a cascade of physiological and biochemical events. Given the important role of microRNAs in regulating gene expression, we analyzed gene expression changes in mouse livers at sham control, ischemia stage, and reperfusion stage. We generated global expression profiles of microRNA and mRNA genes in mouse livers subjected to ischemia-reperfusion injury at the three stages, respectively.
View Article and Find Full Text PDFThe core pluripotency factor Oct4 plays key roles in somatic cell reprogramming through transcriptional control. Here, we profile Oct4 occupancy, epigenetic changes, and gene expression in reprogramming. We find that Oct4 binds in a hierarchical manner to target sites with primed epigenetic modifications.
View Article and Find Full Text PDFBackground: Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells.
Results: We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system.
Mol Phylogenet Evol
February 2014
Previous phylogenetic analyses have led to incongruent evolutionary relationships between tree shrews and other suborders of Euarchontoglires. What caused the incongruence remains elusive. In this study, we identified 6845 orthologous genes between seventeen placental mammals.
View Article and Find Full Text PDF