Publications by authors named "Weisheng Yang"

The design of heavy metal-free thick supercapacitor electrodes with excellent energy storage performance through a novel and effective strategy represents an attractive yet challenging area of research. In this study, a sustainable redox-active tannic acid (TA) is loaded on the carbonized wood (CW) collector to construct a low-curvature, high-capacity, heavy metal-free supercapacitor electrode. The uniform loading of TA on the surface of the CW cell wall is achieved through the combined action of mutually stable hydrogen bonding and π-π interactions, which constructs a fast electron transport channel in the collector.

View Article and Find Full Text PDF

Nanostructured inorganic/wood-structural holocellulose hybrids offer new potential applications, including mechanical energy conversion, superhydrophobic materials, gas adsorption and so on. Owing to the anisotropy of wood, controlling the morphology of mineral particles inside porous holocellulose scaffold is still far from satisfactory. In this work, a homogeneous zinc oxide (ZnO) decoration inside wood-structural holocellulose scaffold was achieved while the morphology, distribution and content of ZnO micro-nano particles were controllable through changing the conditions of hydrothermal growth.

View Article and Find Full Text PDF

Traditional electrode materials for supercapacitors often face issues like high toxicity, cost, and non-renewability. To address these drawbacks, biomass-based alternatives are being explored, aligning with green development trends. Herein, carbonized wood (CW) with rich pore structure and redox-active lignin are combined to fabricate an all-wood-based sustainable supercapacitor electrode material.

View Article and Find Full Text PDF

Redox-active lignin rich in phenolic hydroxyl groups is an ingenious charge storage material. However, its insulating nature limits the storage/release of electrons and requires the construction of electron transfer channels within it. Herein, nanoparticles (PANI/DKL-NPs) are prepared by co-assembly via π-π interactions between conducting polyaniline (PANI) and demethylated Kraft lignin (DKL) molecules for the first time, and rapid electron transfer inside DKL is achieved.

View Article and Find Full Text PDF

Background: Patients with myocardial infarction (MI) can have disturbed sleep, but little is known about the efficacy of light therapy on sleep and prognosis of patients with MI. We conducted a randomized controlled study to investigate its efficacy.

Material And Methods: This preliminary study included 34 patients with MI.

View Article and Find Full Text PDF

In recent years, researchers have put much attention on the improvements and upgrades of novel wet strength agent in the papermaking fields, especially in the usage of household paper. Herein, PEI-KH560 by polyethyleneimine (PEI) and γ-glycidyl ether propyl trimethoxysilane (KH560) was synthesized with five molecular weights (Mw) of PEI at 600, 1800, 10,000, 70,000 and 750,000. Results showed that the molecular weight greatly influenced the physicochemical properties of PEI-KH560, such as the size and thermal stability.

View Article and Find Full Text PDF

In anticipation of the correlations between catalyst structures and their properties, the catalytic activities of 2-imino-1,10-phenanthrolyl iron and cobalt metal complexes are quantitatively investigated via linear machine learning (ML) algorithms. Comparatively, the Ridge Regression model has captured more robust predictive performance compared with other linear algorithms, with a correlation coefficient value of 0.952 and a cross-validation value of 0.

View Article and Find Full Text PDF

Interfacial active water molecule-induced parasitic reactions and stochastic Zn transport-caused dendrite issue significantly impede the implementation of aqueous Zn-ion batteries. Herein, three positively charged amino acids, namely arginine, histidine, and lysine, were utilized as adsorption-type electrolyte additives to enhance the stability and reversibility of Zn anodes. Combined theoretical and experimental analyses verified that these amino acid cations can synergistically modulate the interfacial microenvironment and promote orientational Zn deposition.

View Article and Find Full Text PDF

The study aims to execute machine learning (ML) method for building an intelligent prediction system for catalytic activities of a relatively big dataset of 1056 transition metal complex precatalysts in ethylene polymerization. Among 14 different algorithms, the CatBoost ensemble model provides the best prediction with the correlation coefficient (R ) values of 0.999 for training set and 0.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a common degenerative nervous system disease. At present, there are certain limitations in various treatment options aimed at preventing or delaying the progression of PD. Therefore, the exploration of new drugs for PD is beneficial.

View Article and Find Full Text PDF

The clinical data of 246 patients with acute pancreatitis who met the inclusion and exclusion criteria in our hospital from May 2018 to May 2020 were collected as the modeling group, and 96 patients were used as the model validation group. To observe the expression of mir-25-3p, CARD9 and Survivin in patients with acute pancreatitis. To analyze the prognostic factors of acute pancreatitis by univariate and multivariate analysis, and to establish and validate the prognostic model of acute pancreatitis.

View Article and Find Full Text PDF

Laparoscopic incisional hernia repair using intraperitoneal onlay mesh (IPOM) is one of the most widely used minimally invasive methods for repairing incisional hernias. The laparoscopic IPOM involves implanting the mesh into the abdominal cavity through laparoscopy to repair an abdominal wall hernia. In the IPOM surgery, after the closure of the hernia ring, an anti-adhesion mesh is placed laparoscopically.

View Article and Find Full Text PDF

Lignin, which is rich in phenolic hydroxyl/methoxy groups as redox active groups, is a potential electrolyte material for aqueous redox flow batteries (ARFBs). This work demonstrated to the synthesis of lignin-derived electrolytes via cyclization with 1,4-dihydroxyanthraquinone (1,4-DHAQ), in the absence of hazardous or noble metal catalysts in mild conditions (0 °C, 1 atm). The structure of lignin anthraquinone derivatives (LAQDs) cyclized in basis alkaline solution was experimentally determined.

View Article and Find Full Text PDF

Background: Cuproptosis has recently been considered a novel form of programmed cell death. To date, long-chain non-coding RNAs (lncRNAs) crucial to the regulation of this process remain unelucidated.

Aim: To identify lncRNAs linked to cuproptosis in order to estimate patients' prognoses for hepatocellular carcinoma (HCC).

View Article and Find Full Text PDF

Developing renewable and biodegradable materials derived from cellulose is an attractive strategy to replace petroleum-derived plastics. In this study, metal ions (Cu, Fe, and Al) were added as a green binder into carboxymethyl cellulose (CMC) films to improve their mechanical properties and water resistance capacity. The tensile strengths of CMCAl films were 133 MPa and 99 MPa at 43 % and 97 % humidity, respectively, which were comparable to or greater than those of the majority of commercially available plastics.

View Article and Find Full Text PDF

Cathodic catalytic activity and interfacial mass transfer are key factors for efficiently generating hydrogen peroxide (HO) via a two-electron oxygen reduction reaction (ORR). In this work, a carbonized carboxymethyl cellulose (CMC)-reduced graphene oxide (rGO) synthetic fabric cathode was designed and constructed to improve two-electron ORR activity and interfacial mass transfer. Carbonized CMC exhibits abundant active carboxyl groups and excellent two-electron ORR activity with an HO selectivity of approximately 87%, higher than that of rGO and other commonly used carbonaceous catalysts.

View Article and Find Full Text PDF

Background: Accumulating evidence suggests that cellular senescence promotes tumor formation and that long non-coding RNAs (lncRNAs) expression predicts tumor prognosis. However, senescence-related variables, particularly lncRNAs, are still largely unknown. Therefore, the present study developed a novel senescence-associated lncRNA signature to predict colorectal cancer (CRC) prognosis.

View Article and Find Full Text PDF

Background: The epigenetic regulators of cellular senescence, especially long non-coding RNAs (lncRNAs), remain unclear. The expression levels of lncRNA were previously known to be prognostic indicators for tumors. We hypothesized that lncRNAs regulating cellular senescence could also predict prognosis in patients with hepatocellular carcinoma (HCC) and developed a novel lncRNA predictive signature.

View Article and Find Full Text PDF

When old corrugated cardboard (OCC) is returned to the paper mill for repulping and reuse, the starch, which is added to the paper surface as a reinforcement agent, is dissolved into the pulping wastewater. Most of the OCC pulping wastewater is recycled to save precious water resources; however, during the water recycling process, the accumulation of dissolved starch stimulates microbial reproduction, which causes poor water quality and putrid odor. This problem seriously affects the stability of the papermaking process and product quality.

View Article and Find Full Text PDF

Cellulose-based aerogels are considered to be carriers that can absorb oils and organic solvents owing to the merits of low density and high surface area. However, the natural hydrophility and poor mechanical strength often obstruct their widespread applications. In this work, Miscanthus-based dual cross-linked lignocellulosic nanofibril (LCNF) aerogels were prepared by gas phase coagulation and methylene diphenyl dissocyanate (MDI) modification.

View Article and Find Full Text PDF

Laparoscopic transabdominal preperitoneal hernia repair (TAPP) is one of the most widely used methods in inguinal hernia surgery. After the mesh is placed, the peritoneum must be resutured to avoid contact with the tissues and organs in the abdominal cavity. If the peritoneal suture time is too long, the operation and anesthesia time will be prolonged, increasing the burden on the patient.

View Article and Find Full Text PDF

Hydrolysis of polyethylene terephthalate (PET) is an efficient strategy for the depolymerization of waste PET to terephthalic acid (TPA), which can be used as a fundamental building block for the repolymerization of PET or for the synthesis of biodegradable plastics and metal-organic frameworks. However, most of the reported hydrolysis catalysts are strong acids or bases, which are soluble in reaction media and difficult to separate after the reaction, leading to high production costs and a profound influence on the environment. Herein, we propose the use of TPA, the basic unit of PET, as an acid catalyst to promote the hydrolysis of PET.

View Article and Find Full Text PDF

Developing low-cost and sustainable fractionation technology is the key to achieve the maximal utilization of lignocellulosic biomass. This study reported benzenesulfonic acid (BA) as a green hydrotrope for efficient lignocellulose conversion into two fractions at atmospheric pressure: (1) a primarily cellulosic solid residue that can be utilized to produce high-value building blocks (lignocellulosic nanomaterials or sugars), and (2) the collected spent acid liquor that can be diluted with anti-solvent to easily obtain lignin nanoparticles. BA hydrotropic method exhibited greater reaction selectivity to solubilize lignin, where approximately 80% lignin were removed at only 80 °C in 20 min.

View Article and Find Full Text PDF

Most phenolic resins are synthesized with non-renewable petroleum-based phenol and formaldehyde, which have adverse effects on the environment and human health. To achieve green and sustainable production of phenolic resins, it is important to replace non-renewable toxic phenol and formaldehyde. Herein, a new strategy was proposed to completely replace phenol and formaldehyde, using lignin-derived monomers to synthesize renewable phenolic resins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: