Methods that allow versatile manipulation of metastable centers in semiconductors are highly important owing to their potential for quantum information processing and computations. In this study, we demonstrate that the electron-phonon interaction enables phonon participation to promote relaxation of metastable centers in ZnO, which is known for its persistent photoconductivity (PPC) effect. Experimentally, we show that continuous infrared (IR) radiation (1064 nm, ∼30 mW/cm) promotes longitudinal optical phonons via the Fröhlich interaction and increases the PPC relaxation rate by ∼4 folds.
View Article and Find Full Text PDFSodium-ion batteries (SIBs) are developed to address the serious concern about the limited resources of lithium. To achieve high energy density, anode materials with a large specific capacity and a low operation voltage are highly desirable. Herein, microsized particles of gray Sn (α-Sn) are explored as an anode material of SIBs for the first time.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
Low-cost, high-quality, and large-area superhydrophobic surfaces are in high demand. This study demonstrates laser-engineered polydimethylsiloxane (PDMS) as a platform for versatile and highly efficient water manipulation. The fabrication process consists of two steps: patterning PDMS with arrayed microlenses and laser pulse scanning.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Controlled droplet manipulation by light has tremendous technological potential. We report here a method based on photothermally induced pyroelectric effects that enables manipulation and maneuvering of a water droplet on a superhydrophobic surface fabricated on lithium tantalite (LiTaO). In particular, we demonstrate that the pyroelectric charge distribution has an essential role in this process.
View Article and Find Full Text PDFThe design and fabrication of surfaces that support rapid wetting transition remain technologically challenging. Here, we examine the effects of optical illumination on the wetting behaviors of zinc oxide (ZnO) single crystals. We find that ultraviolet irradiation above the band gap energy promotes a rapid wetting transition, characterized by sliding of the water droplet, within a few seconds.
View Article and Find Full Text PDF