A key pathological feature of Parkinson's Disease (PD) is the progressive degeneration of dopaminergic neurons (DAns) in the substantia nigra pars compacta. Considering the major role of EN1 in the development and maintenance of these DAns and the implications from En1 mouse models, it is highly interesting to study the molecular and protective effect of EN1 also in a human cellular model. Therefore, we generated EN1 knock-out (ko) human induced pluripotent stem cell (hiPSCs) lines and analyzed these during neuronal differentiation.
View Article and Find Full Text PDFParkinson´s disease (PD) pathology progresses throughout the nervous system. Whereas motor symptoms are always present, there is a high variability in the prevalence of non-motor symptoms. It has been postulated that the progression of the pathology is based on a prion-like disease mechanism partly due to the seeding effect of endocytosed-alpha-synuclein (ASYN) on the endogenous ASYN.
View Article and Find Full Text PDFThe oncogene DJ-1 has been originally identified as a suppressor of PTEN. Further on, loss-of-function mutations have been described as a causative factor in Parkinson's disease (PD). DJ-1 has an important function in cellular antioxidant responses, but its role in central metabolism of neurons is still elusive.
View Article and Find Full Text PDFThe normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice.
View Article and Find Full Text PDFMicroRNAs (miRNAs) have regulatory functions during vertebrate embryogenesis. They are short approximately 21bp long endogenously expressed single-stranded RNAs, which preferentially bind to complementary sequences in the 3' untranslated regions (UTR) of mRNAs and typically down-regulate the respective target mRNAs by translational repression or enhanced mRNA degradation. The Notch ligand Delta-like 1 (Dll1) is expressed in a highly dynamic pattern and has pleiotropic functions during embryogenesis and in adult tissues.
View Article and Find Full Text PDFPeriphilin is involved in multiple processes in vivo. To explore its physiological role from an organismic perspective, we generated mice with a gene trap insertion in the periphilin-1 gene. Based on beta-gal reporter activity, a widespread periphilin expression was evident, especially in the developing somites and limbs, the embryonic nervous system, and the adult brain.
View Article and Find Full Text PDFThere is considerable interest in examining the genes that may contribute to anxiety. We examined the function of ERK/MAPK in the acquisition of conditioned fear, as measured by fear-potentiated startle (FPS) in mice as a model for anticipatory anxiety in humans. We characterized the following for the first time in the mouse: (1) the expression of the ERK/MAPK signaling pathway components at the protein level in the lateral amygdala (LA); (2) the time course of activation of phospho-activated MAPK in the LA after fear conditioning; (3) if pharmacological inhibition of pMAPK could modulate the acquisition of FPS; (4) the cell-type specificity of pMAPK in the LA after fear conditioning.
View Article and Find Full Text PDFThe mouse Mgn protein (Helt) is structurally related to the neurogenic Drosophila hairy and Enhancer of split [h/E(spl)] proteins, but its unique structural properties distinguish it from other members of the family. Mgn expression shows a spatiotemporal correlation with GABAergic markers in several brain regions. We report here that homozygous Mgn-null mice die between the second and the fifth postnatal week of age, and show a complete depletion of Gad65 and Gad67 expression in the superior colliculus and a reduction in the inferior colliculus.
View Article and Find Full Text PDFMidbrain neurons synthesizing the neurotransmitter dopamine play a central role in the modulation of different brain functions and are associated with major neurological and psychiatric disorders. Despite the importance of these cells, the molecular mechanisms controlling their development are still poorly understood. The secreted glycoprotein Wnt1 is expressed in close vicinity to developing midbrain dopaminergic neurons.
View Article and Find Full Text PDFFibroblast growth factor 8 (FGF8) mediates the function of the midbrain-hindbrain organizer (MHO). FGF signals are transmitted by means of four known FGF receptors (FGFRs). Studies of Fgfr expression in early vertebrate development have shown that Fgfr1 is expressed along the entire neural tube, whereas Fgfr2 and Fgfr3 expression has been shown to spare the tissue adjacent to the MHO.
View Article and Find Full Text PDFSignaling molecules regulating development of the midbrain and anterior hindbrain are expressed in distinct bands of cells around the midbrain-hindbrain boundary. Very little is known about the mechanisms responsible for the coherence of this signaling center. One of the fibroblast growth factor (FGF) receptors, Fgfr1, is required for establishment of a straight border between developing mid- and hindbrain.
View Article and Find Full Text PDFMidbrain dopaminergic and hindbrain serotonergic neurons play an important role in the modulation of behavior and are involved in a series of neuropsychiatric disorders. Despite the importance of these cells, little is known about the molecular mechanisms governing their development. During embryogenesis, midbrain dopaminergic neurons are specified rostral to the midbrain-hindbrain organizer (MHO), and hindbrain serotonergic neurons are specified caudal to it.
View Article and Find Full Text PDFIn pheochromocytoma (PC12) cells nerve growth factor (NGF) and epidermal growth factor (EGF) activate similar receptor tyrosine kinase signaling pathways but evoke strikingly different biological outcomes: NGF induces differentiation and EGF acts as a mitogen. A novel approach was developed for identifying transcription factor activities associated with NGF-activated, but not EGF-activated, signaling, using random oligonucleotide clones from a DNA recognition library to isolate specific DNA binding proteins from PC12 nuclear extracts. A protein complex from NGF-treated, but not EGF-treated, cells was identified that exhibits increased mobility and DNA binding activity in gel mobility shift assays.
View Article and Find Full Text PDFDuring the past three decades the number of molecules exhibiting trophic actions in the brain has increased drastically. These molecules promote and/or control proliferation, differentiation, migration, and survival (sometimes even the death) of their target cells. In this review a comprehensive overview of small diffusible factors showing trophic actions in the central nervous system (CNS) is given.
View Article and Find Full Text PDFBrain Res Dev Brain Res
October 1994
In order to be able to study the still disputed fate and function of the large Cajal-Retzius cells in the marginal zone (prospective layer I) during corticogenesis, it is necessary to have an unambiguous marker for them. We have found that antibodies to the calcium-binding protein calretinin label Cajal-Retzius cells in the rat throughout the whole period of corticogenesis into adulthood. Calretinin positive cells were also detected in the subplate, cortical plate and the ventricular zone.
View Article and Find Full Text PDFThe anatomical distributions of the mitochondrial enzyme cytochrome oxidase (CO) and of the calcium binding protein parvalbumin (PV) were studied in the striate cortex of adult and neonate New World monkeys (Callithrix jacchus). In the adult marmoset, both proteins were found in laminar arrangements similar to those described for the macaque monkey, with prominent bands of PV-like immunoreactive (PV-LI) puncta in layers IV and IIIb, and fairly evenly distributed PV-LI nonpyramidal neurons. Furthermore, the pattern of CO activity in area 17 of the neonate marmoset was almost identical to the CO pattern described in neonate macaque and squirrel monkeys.
View Article and Find Full Text PDF