Publications by authors named "Weisel J"

Glycoprotein IIb/IIIa (GP IIb/IIIa) inhibitors were shown recently to facilitate the rate and the extent of pharmacological thrombolysis. However, their synergistic potential with rtPA in dissolving thrombotic vaso-occlusions is not fully understood. We have therefore developed a dynamic and structural approach for analysis of fibrinolysis to assess the inhibiting effect of platelets and the facilitating effect of GPIIb/IIIa inhibitors in dissolving platelet-rich clots (PRCs).

View Article and Find Full Text PDF

The antihyperglycemic drug dimethylbiguanide (DMB, also known as metformin) reduces the risk of cardiovascular complications in type 2 diabetes, although the mechanism(s) involved are unclear. DMB reduces glycosylation-related protein cross-linking, a process similar to fibrin cross-linking catalyzed by activated factor XIII (FXIII). To investigate whether the cardioprotective effect of DMB could be related to effects on clot stabilization, we studied the effects of DMB on FXIII, thrombin activity, and cleavage of fibrin(ogen).

View Article and Find Full Text PDF

Lipoprotein(a) is composed of low-density lipoprotein linked both covalently and noncovalently to apolipoprotein(a). The structure of lipoprotein(a) and the interactions between low-density lipoprotein and apolipoprotein(a) were investigated by electron microscopy and correlated with analytical ultracentrifugation. Electron microscopy of rotary-shadowed and unidirectionally shadowed lipoprotein(a) prepared without glycerol revealed that it is a nearly spherical particle with no large projections.

View Article and Find Full Text PDF

The platelet integrin alphaIIbbeta3 is representative of a class of heterodimeric receptors that upon activation bind extracellular macromolecular ligands and form signaling clusters. This study examined how occupancy of alphaIIbbeta3's fibrinogen binding site affected the receptor's solution structure and stability. Eptifibatide, an integrin antagonist developed to treat cardiovascular disease, served as a high-affinity, monovalent model ligand with fibrinogen-like selectivity for alphaIIbbeta3.

View Article and Find Full Text PDF

Circulating antifibrinogen antibodies have been reported in rare afibrinogenemic propositi, apparently occurring following fibrinogen replacement therapy, but immune complexes have not been described. In this report we describe circulating immune complexes formed by a monoclonal antifibrinogen IgG in a heterozygous hypodysfibrinogenemic (A alpha 16 Arg-->Cys) proband. Estimated by partial protein sequence and by other analyses, each immune complex consisted of one fibrin(ogen), one C1q, and 3-4 IgG molecules.

View Article and Find Full Text PDF

Previous studies have suggested that clots with thinner fiber diameter lyse at slower rates than clots with thicker fiber diameter. We examined lysis of fibrin clots formed from three variant fibrinogens, each with substitutions in the N-terminal region of the B beta chain. When we measured lysis as the rate of decrease in turbidity at 350 nm, we found that the rate of lysis was slower than normal for clots with thinner fibers.

View Article and Find Full Text PDF

The alpha C domains have been localized on fibrinogen and fibrin. Several model systems have been developed to study their functions. Analysis of the amino acid sequence of the alpha C domains suggested that each is made up of a globular and an extended portion.

View Article and Find Full Text PDF

Fibrinogen Bicêtre II is a dysfibrinogenemia in which there is a substitution of Lys for Asn at gamma 308. We have studied the polymerization of this abnormal fibrinogen by measurement of turbidity and have characterized clot structure by scanning electron microscopy, permeation, and viscoelastic measurements. The results of these studies demonstrate that this amino acid substitution has substantial effects on the structure and properties of the clot, resulting in clots made up of thick fibers and large pores with greatly reduced stiffness and increased slippage of protofibrils.

View Article and Find Full Text PDF

The authors have identified a 12-residue carboxyl-terminal extension of Lys-Ser-Pro-Met-Arg-Arg-Phe-Leu-Leu-Phe-Cys-Met in a dysfibrinogen derived from a woman heterozygotic for this abnormality and associated with severe bleeding. This extension is due to a T-to-A mutation that creates AAG encoding Lys at the stop (TAG) codon, thus translating 36 base pairs in the noncoding region of the Bbeta gene. The extra Cys residues appear to be involved in 1 or 2 disulfide bonds between 2 adjacent abnormal fibrinogen molecules, forming a fibrinogen homodimer as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

View Article and Find Full Text PDF

Factor XIII on activation by thrombin cross-links fibrin. A common polymorphism Val to Leu at position 34 in the FXIII A subunit is under investigation as a risk determinant of thrombosis. Because Val34Leu is close to the thrombin cleavage site, the hypothesis that it would alter the function of FXIII was tested.

View Article and Find Full Text PDF

Abnormal fibrin architecture is thought to be a determinant factor of hypofibrinolysis. However, because of the lack of structural knowledge of the process of fibrin digestion, relationships between fibrin architecture and hypofibrinolysis remain controversial. To elucidate further structural and dynamic changes occurring during fibrinolysis, cross-linked plasma fibrin was labeled with colloidal gold particles, and fibrinolysis was followed by confocal microscopy.

View Article and Find Full Text PDF

Urokinase-type plasminogen activator (uPA) binds to its receptor (uPAR) with a K(d) of about 1 nm. The catalytic activity of the complex is apparent at uPA concentrations close to K(d). Other functions of the complex, such as signal transduction, are apparent at much higher concentrations (35-60 nm).

View Article and Find Full Text PDF

We synthesized a variant, recombinant fibrinogen modeled after the heterozygous dysfibrinogen Vlissingen/Frankfurt IV, a deletion of two residues, gammaAsn-319 and gammaAsp-320, located within the high affinity calcium-binding pocket. Turbidity studies showed no evidence of fibrin polymerization, although size exclusion chromatography, transmission electron microscopy, and dynamic light scattering studies showed small aggregates. These aggregates did not resemble normal protofibrils nor did they clot.

View Article and Find Full Text PDF

Studies on transglutaminases usually focus on the polymerization of protein substrates by intermolecular N(epsilon)(gamma-glutamyl)lysine bridges, without considering the possibility that the monomeric protein units, themselves, could also become crosslinked internally. Both types of crosslinks are produced in the reaction of fibrinogen with red cell transglutaminase. We isolated the transglutaminase-modified, mostly monomeric form (92-96%) of fibrinogen with a N(epsilon)(gamma-glutamyl)lysine content of approximately 1.

View Article and Find Full Text PDF

The origins of clot rheological behavior associated with network morphology and factor XIIIa-induced cross-linking were studied in fibrin clots. Network morphology was manipulated by varying the concentrations of fibrinogen, thrombin, and calcium ion, and cross-linking was controlled by a synthetic, active-center inhibitor of FXIIIa. Quantitative measurements of network features (fiber lengths, fiber diameters, and fiber and branching densities) were made by analyzing computerized three-dimensional models constructed from stereo pairs of scanning electron micrographs.

View Article and Find Full Text PDF

The purpose of this investigation was to determine what structural changes convert "inert" alphaIIbbeta3 integrins into "activated" high-affinity receptors for adhesive proteins. Light scattering, analytical ultracentrifugation, electron microscopy, and molecular modeling were used to probe the conformational states of the alphaIIbbeta3 integrin. Isolated from human blood platelets in octyl glucoside, the alphaIIbbeta3 complex behaved as an asymmetric 230 kDa macromolecule with a z-average translational diffusion coefficient of 2.

View Article and Find Full Text PDF

Retention of lipoproteins within the vasculature is a central event in the pathogenesis of atherosclerosis. However, the signals that mediate this process are only partially understood. Prompted by putative links between inflammation and atherosclerosis, we previously reported that alpha-defensins released by neutrophils are present in human atherosclerotic lesions and promote the binding of lipoprotein(a) [Lp(a)] to vascular cells without a concomitant increase in degradation.

View Article and Find Full Text PDF

Fibrin is degraded by the fibrinolytic system in which a plasminogen activator converts plasminogen to plasmin, a serine protease that cleaves specific bonds in fibrin leading to solubilization. To elucidate further the biophysical processes involved in conversion of insoluble fibers to soluble fragments, fibrin was treated with either plasmin or the combination of plasminogen and plasminogen activator, and morphologic changes were observed using scanning electron microscopy. These changes were correlated with biochemical analysis and with characterization of released, soluble fragments by transmission electron microscopy.

View Article and Find Full Text PDF

The differences between coarse and fine fibrin clots first reported by Ferry have been interpreted in terms of nonspecific ionic strength effects for nearly 50 years and have fostered the notion that fibrin polymerization is largely controlled by electrostatic forces. Here we report spectroscopic and electron microscopy studies carried out in the presence of different salts that demonstrate that this long-held interpretation needs to be modified. In fact, the differences are due entirely to the specific binding of Cl- to fibrin fibers and not to generic ionic strength or electrostatic effects.

View Article and Find Full Text PDF

The effect of fibrin matrix micromorphology on neurite growth was investigated by measuring the length of neurites growing in three-dimensional fibrin gels with well characterized micromorphologies. Dorsal root ganglia (DRGs) from 7-day chick embryos were entrapped and cultured in gels made from varying concentrations of fibrinogen (5-15 mg/mL) or calcium (2-10 mM). The length of growing neurites was measured with light videomicroscopy, and the number and diameter of fibrin fiber bundles were measured from scanning electron micrographs.

View Article and Find Full Text PDF

Fibrin polymerizes through the interaction of sites exposed by the thrombin-mediated cleavage of fibrinopeptides in the central E region of the protein and complementary sites near the ends of the molecules, open in the D regions of both fibrinogen and fibrin. A preparation of fragment E, containing the central domain and part of the coiled-coil regions of fibrin, was used in mixtures with fibrinogen in this electron microscopy study to investigate the formation of fibrillar structures. At short times, linearly ordered oligomers of fibrinogen were observed with an additional mass of E fragments at the end-to-end junctions.

View Article and Find Full Text PDF

Plasma fibrinogen is a mixture of multiple molecular forms arising mainly through alternative mRNA processing and subsequent posttranslational modification. Recombinant fibrinogen is synthesized without alternative mRNA processing in a cultured cell system that may generate novel posttranslational modifications. Thus, to show that recombinant fibrinogen can serve as a functional model for plasma fibrinogen, we have examined the conversion of fibrinogen to fibrin, comparing the recombinant with the plasma protein.

View Article and Find Full Text PDF

We describe a patient with severe epistaxis, prolonged coagulation tests and decreased plasma factor V following exposure to bovine topical thrombin. Patient IgG, but not normal IgG, showed binding to immobilized thrombin (bovine > human) and fibrinogen, and to factor V by Western blotting; the binding to thrombin was inhibited by hirudin fragment 54-65. Electron microscopy of rotary shadowed preparations showed complexes with IgG molecules attached near the ends of trinodular fibrinogen molecules.

View Article and Find Full Text PDF