The SLC6A1 gene encodes the gamma-aminobutyric acid (GABA) transporter GAT-1, the deficiency of which is associated with infantile encephalopathy with intellectual disability. We designed two AAV9 vectors, with either the JeT or MeP promoter, and conducted preclinical gene therapy studies using heterozygous and homozygous Slc6a1 KO mice at different developmental ages and various routes of administration. Neonatal intracerebroventricular administration of either vector resulted in significantly normalized EEG patterns in Slc6a1-/- or Slc6a1+/- mice, as well as improvement in several behavioral phenotypes of Slc6a1-/- mice.
View Article and Find Full Text PDFThe Myocyte Enhancer Factor 2 (MEF2) transcription factors suppress an excitatory synapse number by promoting degradation of the synaptic scaffold protein, postsynaptic density protein 95 (PSD-95), a process that is deficient in the mouse model of Fragile X Syndrome, Fmr1 KO. How MEF2 activation results in PSD-95 degradation and why this is defective in Fmr1 KO neurons is unknown. Here we report that MEF2 induces a Protein phosphatase 2A (PP2A)-mediated dephosphorylation of murine double minute-2 (Mdm2), the ubiquitin E3 ligase for PSD-95, which results in nuclear export and synaptic accumulation of Mdm2 as well as PSD-95 degradation and synapse elimination.
View Article and Find Full Text PDFBackground: Development of treatments for obsessive-compulsive disorder (OCD) is hampered by a lack of mechanistic understanding about this prevalent neuropsychiatric condition. Although circuit changes such as elevated frontostriatal activity are linked to OCD, the underlying molecular signaling that drives OCD-related behaviors remains largely unknown. Here, we examine the significance of type 5 metabotropic glutamate receptors (mGluR5s) for behavioral and circuit abnormalities relevant to OCD.
View Article and Find Full Text PDFUnlabelled: Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice.
View Article and Find Full Text PDFAbnormal metabotropic glutamate receptor 5 (mGluR5) function, as a result of disrupted scaffolding with its binding partner Homer, contributes to the pathophysiology of fragile X syndrome, a common inherited form of intellectual disability and autism caused by mutations in Fmr1. How loss of Fmr1 disrupts mGluR5-Homer scaffolds is unknown, and little is known about the dynamic regulation of mGluR5-Homer scaffolds in wild-type neurons. Here, we demonstrate that brief (minutes-long) elevations in neural activity cause CaMKIIα-mediated phosphorylation of long Homer proteins and dissociation from mGluR5 at synapses.
View Article and Find Full Text PDFThe activity-dependent transcription factor myocyte enhancer factor 2 (MEF2) induces excitatory synapse elimination in mouse neurons, which requires fragile X mental retardation protein (FMRP), an RNA-binding protein implicated in human cognitive dysfunction and autism. We report here that protocadherin 10 (Pcdh10), an autism-spectrum disorders gene, is necessary for this process. MEF2 and FMRP cooperatively regulate the expression of Pcdh10.
View Article and Find Full Text PDFEnhanced metabotropic glutamate receptor subunit 5 (mGluR5) function is causally associated with the pathophysiology of fragile X syndrome, a leading inherited cause of intellectual disability and autism. Here we provide evidence that altered mGluR5-Homer scaffolds contribute to mGluR5 dysfunction and phenotypes in the fragile X syndrome mouse model, Fmr1 knockout (Fmr1(-/y)). In Fmr1(-/y) mice, mGluR5 was less associated with long Homer isoforms but more associated with the short Homer1a.
View Article and Find Full Text PDFMutations in TARDBP, encoding TAR DNA-binding protein-43 (TDP-43), are associated with TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). We compared wild-type TDP-43 and an ALS-associated mutant TDP-43 in vitro and in vivo. The A315T mutant enhances neurotoxicity and the formation of aberrant TDP-43 species, including protease-resistant fragments.
View Article and Find Full Text PDFNeuropathology involving TAR DNA binding protein-43 (TDP-43) has been identified in a wide spectrum of neurodegenerative diseases collectively named as TDP-43 proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). To test whether increased expression of wide-type human TDP-43 (hTDP-43) may cause neurotoxicity in vivo, we generated transgenic flies expressing hTDP-43 in various neuronal subpopulations. Expression in the fly eyes of the full-length hTDP-43, but not a mutant lacking its amino-terminal domain, led to progressive loss of ommatidia with remarkable signs of neurodegeneration.
View Article and Find Full Text PDF