To elucidate aging-associated cellular population dynamics, we present , a single-cell transcriptome atlas profiling over 20 million cells from 623 mouse tissues across different life stages, sexes, and genotypes. This comprehensive dataset reveals more than 3,000 unique cellular states and over 200 aging-associated cell populations. Our panoramic analysis uncovered organ-, lineage-, and sex-specific shifts of cellular dynamics during lifespan progression.
View Article and Find Full Text PDFBackground: With rising global diabetes prevalence, precise early identification and management of diabetes risk are critical research areas. The metabolic score for insulin resistance (METS-IR), a novel non-insulin-based tool, is gaining attention for quantifying insulin resistance using multiple metabolic parameters. Despite its potential in predicting diabetes and its precursors, evidence on its specific relationship with diabetes is limited, especially in large-scale population validation and mechanistic exploration.
View Article and Find Full Text PDFSpatial transcriptomics has revolutionized our understanding of cellular network dynamics in aging and disease by enabling the mapping of molecular and cellular organization across various anatomical locations. Despite these advances, current methods face significant challenges in throughput and cost, limiting their utility for comprehensive studies. To address these limitations, we introduce (Imaging Reconstruction using Indexed Sequencing), a optics-free spatial transcriptomics platform that eliminates the need for predefined capture arrays or extensive imaging, allowing for the rapid and cost-effective processing of multiple tissue sections simultaneously.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
July 2024
Goosecoid (GSC), translated from a homeobox gene, is a protein that participates in metastasis of various cancers. Pancreatic adenocarcinoma (PAAD) is one of the deadliest malignancies associated with a poor diagnosis and prognosis. To develop new treatment target or biomarker for PAAD, this study intended to assess the effects and the molecular mechanism of GSC on PAAD metastasis.
View Article and Find Full Text PDFTo elucidate the aging-associated cellular population dynamics throughout the body, here we present PanSci, a single-cell transcriptome atlas profiling over 20 million cells from 623 mouse tissue samples, encompassing a range of organs across different life stages, sexes, and genotypes. This comprehensive dataset allowed us to identify more than 3,000 unique cellular states and catalog over 200 distinct aging-associated cell populations experiencing significant depletion or expansion. Our panoramic analysis uncovered temporally structured, organ- and lineage-specific shifts of cellular dynamics during lifespan progression.
View Article and Find Full Text PDFProgenitor cells are critical in preserving organismal homeostasis, yet their diversity and dynamics in the aged brain remain underexplored. We introduced TrackerSci, a single-cell genomic method that combines newborn cell labeling and combinatorial indexing to characterize the transcriptome and chromatin landscape of proliferating progenitor cells in vivo. Using TrackerSci, we investigated the dynamics of newborn cells in mouse brains across various ages and in a mouse model of Alzheimer's disease.
View Article and Find Full Text PDFPancreatic cancer remains the common cancer with the worst prognosis because of its late diagnosis and extensive metastasis. This study aimed to investigate the effects of GABRP on pancreatic cancer metastasis and the molecular mechanism. The expression of GABRP was measured using the quantitative real-time PCR and western blot.
View Article and Find Full Text PDFBackgrounds: To compare the clinical effectiveness of different mesh fixation techniques in Lichtenstein tension-free repair using network meta-analysis.
Methods: Cochrane Library, Medline, EMBASE, and Web of Science databases were searched until 1 December 2020, and randomized controlled trials (RCTs) comparing outcomes between different mesh fixation techniques were included. The primary endpoints were chronic postoperative inguinal pain (CPIP) and hernia recurrence.
J Mol Cell Biol
September 2019
Hedgehog (Hh) signalling plays conserved roles in controlling embryonic development; its dysregulation causes many diseases including cancers. The G protein-coupled receptor Smoothened (Smo) is the key signal transducer of the Hh pathway, whose posttranslational regulation has been shown to be critical for its accumulation and activation. Ubiquitination has been reported an essential posttranslational regulation of Smo.
View Article and Find Full Text PDFThe Hedgehog (Hh) signaling pathway plays important roles in developmental processes including pattern formation and tissue homeostasis. The seven-pass transmembrane receptor Smoothened (Smo) is the pivotal transducer in the pathway; it, and thus the pathway overall, is regulated by ubiquitin-mediated degradation, which occurs in the absence of Hh. In the presence of Hh, the ubiquitination levels of Smo are decreased, but the molecular basis for this outcome is not well understood.
View Article and Find Full Text PDFHedgehog (Hh) signaling plays a pivotal role in animal development and its deregulation in humans causes birth defects and several types of cancer. Protein Kinase A (PKA) modulates Hh signaling activity through phosphorylating the transcription factor Cubitus interruptus (Ci) and G protein coupled receptor (GPCR) family protein Smoothened (Smo) in Drosophila, but how PKA activity is regulated remains elusive. Here, we identify a novel regulator of the Hh pathway, the capping-enzyme mRNA-cap, which positively regulates Hh signaling activity through modulating PKA activity.
View Article and Find Full Text PDFOrganic thiols have received extensive attention recently because of their relative stability and ease of examination compared to other potential molecular electronic materials. In this work, scanning probe microscopy (SPM) is used to study (i) the structural properties of self-assembled monolayers (SAMs) containing conjugated dithiols and (ii) the formation of the upper molecule-metal interface on dithiol SAMs. The top gold film is deposited either by thermal evaporation or by nano-transfer printing (nTP).
View Article and Find Full Text PDFWe present grazing-incidence Fourier transform infrared and AFM data of Au, Al, and Ti vapor-deposited onto self-assembled monolayers (SAMs) of conjugated mono- and dithiols. SAMs of 4,4'''-dimercapto-p-quaterphenyl, 4,4"-dimercapto-p-terphenyl, and 4,4'-dimercapto-p-biphenyl have reactive thiols at the SAM/vacuum interface that interact with vapor-deposited Au or Al atoms, preventing metal penetration. Conjugated monothiols lack such metal blocking groups, and metals (Au, Al) can penetrate into their SAMs.
View Article and Find Full Text PDFThe use of surface-initiated ring-opening metathesis polymerization (SI-ROMP) for producing polymer dielectric layers is reported. Surface tethering of the catalyst to Au or Si/SiO2 surfaces is accomplished via self-assembled monolayers of thiols or silanes containing reactive olefins. Subsequent SI-ROMP of norbornene can be conducted under mild conditions.
View Article and Find Full Text PDF