Publications by authors named "Weiren Zhu"

In this paper, we propose a novel dual-band metasurface absorber with a high frequency ratio based on graphene. By carefully designing a centrally symmetrical graphene pattern and positioning it on a glass medium, while utilizing ITO as a ground, the metasurface absorber achieves remarkable high frequency ratio microwave absorption. Specifically, this metasurface absorber exhibits two distinct resonance points at 3.

View Article and Find Full Text PDF

The 3,3',5,5'-tetramethylbenzidine-HO (TMB-HO) platform has gained widespread use for rapid detection of various analytes in foods. However, the existing TMB-HO platforms suffer from limited accuracy, as their signal output is confined to the visible region, which is prone to interference from various food colorants in real samples. To address this challenge, a novel Au@Os-mediated TMB-HO platform is developed for both rapid and accurate detection of analytes in foods.

View Article and Find Full Text PDF

This work presents a theoretical design and experimental demonstration of a transmissive microwave metasurface for generating dual-vector vortex beams (VVBs). The proposed metasurface consists of an array of pixelated dartboard discretization meta-atoms. By rotating the meta-atoms from 0° to 180°, a Pancharatnam-Barry (P-B) phase covering the full 360° range is achieved, with a transmittance exceeding 90% over the frequency range from 9.

View Article and Find Full Text PDF

This work presents a theoretical design and experimental demonstration of a novel miniaturized leaky-wave antenna (LWA) using composite waveguide based on substrate-integrated plasmonic waveguide (SIPW). The SIPW is designed by embedding hybrid dual spoof surface plasmon polariton (SSPP) structure into a three-layer substrate integrated waveguide (SIW). Due to the slow-wave effect of SIPW, the proposed miniaturized composite waveguide forms slowed phase velocity and decreased lower cutoff frequency.

View Article and Find Full Text PDF

Acoustic metasurfaces, as two-dimensional acoustic metamaterials, are a current research topic for their sub-wavelength thickness and excellent acoustic wave manipulation. They hold significant promise in noise reduction and isolation, cloaking, camouflage, acoustic imaging, and focusing. Resonant structural units are utilized to construct acoustic metasurfaces with the unique advantage of controlling large wavelengths within a small size.

View Article and Find Full Text PDF

Graphene, as a widely used nanomaterial, has shown great flexibility in designing optically transparent microwave metasurfaces with broadband absorption. However, the design of graphene-based microwave metasurfaces relies on cumbersome parameter sweeping as well as the expertise of researchers. In this paper, we propose a machine-learning network which enables the forward prediction of reflection spectra and inverse design of versatile microwave absorbers.

View Article and Find Full Text PDF

Alvarez lenses, a kind of passive zoom lenses with reconfigurable focus, have been widely applied in optics but very few at lower frequencies such as in a microwave band, where the phase approximation for Alvarez lenses becomes inaccurate. In this article, we propose a design of a modified Alvarez lens with phase compensation for microwave, which consists of a pair of transmissive metasurfaces with high efficiency. The proposed metasurface consists of miniaturized units with the capability of full 2π phase modulation.

View Article and Find Full Text PDF

Programmable metasurfaces have great potential for the implementation of low-complexity and low-cost phased arrays. Due to the difficulty of multiple-bit phase control, conventional programmable metasurfaces suffer a relatively high sidelobe level (SLL). In this manuscript, a time modulation strategy is introduced in the 1-bit transmissive programmable metasurface for reducing the SLLs of the generated patterns.

View Article and Find Full Text PDF

Electrical dipole resonances typically have low Q factor and broad resonant linewidth caused by strong free-space coupling with high radiative loss. Here, we present a strategy for enhancing the Q factor of the electrical resonance via the interference of a toroidal dipole. To validate such a strategy, a metasurface consisting of two resonators is designed that responsible to the electric and toroidal dipoles.

View Article and Find Full Text PDF

Microwave stealth technology with optical transparency is of great significance for solar-powered aircrafts (e.g., satellites or unmanned aerial vehicles) in increasingly complex electromagnetic environments.

View Article and Find Full Text PDF

Millimeter-wave (mmWave) and orbital angular momentum (OAM) multiplexing are two key technologies for modern wireless communications, where significant efforts have been devoted to combining these two technologies for extremely high channel capacities. Recently, programmable metasurfaces have been extensively studied for stimulating dynamic multi-mode OAM beams, owing to their ability of subtle dynamic modulation over electromagnetic waves in a digital manner. However, programmable metasurfaces for mmWave OAM stimulation are rarely mentioned, due to the requirement of extremely high processing precision for mmWave applications.

View Article and Find Full Text PDF

Lung cancer is the most frequently life-threatening disease and the prominent cause of cancer-related mortality among human beings worldwide, where poor early diagnosis and expensive detection costs are considered as significant reasons. Here, we try to tackle this issue by proposing a novel label-free and low-cost strategy for rapid detection and distinction of lung cancer cells relying on plasmonic toroidal metasurfaces at terahertz frequencies. Three disjoint regions are displayed in identifiable intensity-frequency diagram, which could directly help doctors determine the type of lung cancer cells for clinical treatment.

View Article and Find Full Text PDF

Active metasurfaces with dynamically switchable functionalities are highly in demands in various practical applications. In this paper, we experimentally present an active metasurface based on PIN diodes which can realize nearly perfect reflection, transmission and absorption in a single design. Such switchable functionalities are accomplished by controlling the PIN diodes integrated in both layers of the metasurface.

View Article and Find Full Text PDF

Metamaterial-inspired biosensors have been extensively studied recently years for fast and low-cost THz detection. However, only the variation of the resonance frequency has been closely concerned in such sensors so far, whiles the magnitude variation, which also provide important information of the analyte, has not been sufficiently analyzed. In this paper, by the observation of two degree of variations, we propose a label-free biosensing approach for molecular classification of glioma cells.

View Article and Find Full Text PDF

Broadband communication with high data rates is a dire need for state-of-the-art wireless technologies. For achieving efficient wireless communication (particularly in an indoor environment), the electromagnetic (EM) waves should maintain their state of polarization despite encountering multiple reflections. Metasurfaces provide a unique platform to design subwavelength-featured meta-reflectarrays which enable the desired retention of the polarization state of an EM wave upon reflection.

View Article and Find Full Text PDF

Trapping and manipulating micro-size particles using optical tweezers has contributed to many breakthroughs in biology, materials science, and colloidal physics. However, it remains challenging to extend this technique to a few nanometers particles owing to the diffraction limit and the considerable Brownian motion of trapped nanoparticles. In this work, a nanometric optical tweezer is proposed by using a plasmonic nanocavity composed of the closely spaced silver coated fiber tip and gold film.

View Article and Find Full Text PDF

A planar isotropic unit cell based on Huygens' principle is presented for achieving transmission phase control. By tailoring overlapping electric and magnetic resonances with geometry of the proposed unit cell, the transmission phase ranging from 0 - 2π is achieved with high transmittance. The proposed unit cell is then employed to design a metasurface lens with center frequency at 9.

View Article and Find Full Text PDF

We present experimentally a double-arrow metasurface for high-efficiently manipulating the polarization states of electromagnetic waves in the dual-band. The metasurface is capable of converting a linearly polarized (LP) incident wave into a circularly polarized (CP) wave or its cross-polarized LP wave at different frequencies. It is numerically shown that in the two bands from 14.

View Article and Find Full Text PDF

We investigated the optical binding force in a plasmonic heterodimer structure consisting of two nano-disks. It is found that when illuminated by a tightly focused radially polarized beam (RPB), the plasmon modes of the two nano-disks are strongly hybridized, forming bonding/antibonding modes. An interesting observation of this setup is that the direction of the optical binding force can be controlled by changing the wavelength of illumination, the location of the dimer, the diameter of the nano-disks, and the dimer gap size.

View Article and Find Full Text PDF

Artificially engineered metasurfaces provide extraordinary wave control at the subwavelength scale. However, metasurfaces proposed so far suffer due to limited bandwidths. In this paper, extremely thin metasurfaces made of single metallic layer is experimentally presented for ultra-wideband operation from 9.

View Article and Find Full Text PDF

We demonstrate a scheme to characterize the localized surface plasmon resonances (LSPRs) of an individual metallic nanorod by employing a focused radially polarized beam (RPB) illumination under normal incidence. The focused RPB has a unique three-dimensional electric field polarization distribution in the focal plane, which can effectively and selectively excite the dipole and multipole plasmon resonances in a metallic nanorod by just moving the nanorod within the focal plane. This performance can be attributed to the mode matching between the excitation electric field of the incident RPB and the LSPRs in a metallic nanorod.

View Article and Find Full Text PDF

Carbon dots (CDots) are a promising biocompatible nanoscale source of light, yet the origin of their emission remains under debate. Here, we show that all the distinctive optical properties of CDots, including the giant Stokes shift of photoluminescence and the strong dependence of emission color on excitation wavelength, can be explained by the linear optical response of the partially sp-hybridized carbon domains located on the surface of the CDots' sp-hybridized amorphous cores. Using a simple quantum chemical approach, we show that the domain hybridization factor determines the localization of electrons and the electronic bandgap inside the domains and analyze how the distribution of this factor affects the emission properties of CDots.

View Article and Find Full Text PDF

Boosting the nonlinear conversion rate in nanoscale is pivotal for practical applications such as highly sensitive biosensors, extreme ultra-violate light sources, and frequency combs. Here, we theoretically study the enhancement of second-harmonic generation (SHG) in a plasmonic trimer assisted by breathing modes. The geometry of the trimer is fine-tuned to produce strong plasmonic resonances at both the fundamental and SH wavelengths to boost SHG intensity.

View Article and Find Full Text PDF

We present a generic approach for the generation of pseudo non-diffracting Bessel beams using polarization insensitive metasurfaces with high efficiency. Cascaded unit cells, which are fully symmetric, are designed for the complete 2π phase control in the transmission mode. Based on the topological arrangements of such unit cells, two metasurfaces for the generation of zero-order (i.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: