Mater Today Bio
February 2023
Spinal cord injuries (SCIs) are devastating. In SCIs, a powerful traumatic force impacting the spinal cord results in the permanent loss of nerve function below the injury level, leaving the patient paralyzed and wheelchair-bound for the remainder of his/her life. Unfortunately, clinical treatment that depends on surgical decompression appears to be unable to handle damaged nerves, and high-dose methylprednisolone-based therapy is also associated with problems, such as infection, gastrointestinal bleeding, femoral head necrosis, obesity, and hyperglycemia.
View Article and Find Full Text PDFPostoperative infections following implant-related spinal surgery are severe and disastrous complications for both orthopaedic surgeons and patients worldwide. They can cause neurological damage, disability, and death. To better understand the mechanism of these destructive complications and intervene in the process, further research is needed.
View Article and Find Full Text PDFObjective: To study the effectiveness of a new spinal protection device for preventing and treating osteoporotic vertebral compression fractures (OVCFs) by finite element analysis (FEA).
Methods: One healthy volunteer and one patient with 1-segment lumbar vertebral compression fractures were included in this experimental study. The DICOM files of two different lumbar spiral computed tomography (CT) scans were converted into STL files, and 3D finite element models of the lumbar spine were generated for normal and L1 vertebral fracture spines.
Peripheral blood was extracted from a 48-year old healthy male donor. Induced pluripotent stem cells (iPSC) were reprogrammed by sendai virus encoding Klf-4, c-Myc, Oct-4, and Sox-2. The iPSC line showed pluripotency, which was verified by immunofluorescence staining.
View Article and Find Full Text PDFPeripheral blood was extracted from a 45-year old female patient clinically diagnosed with Stickler syndrome harboring a heterozygous splicing mutation in COL2A1 (NM_033150, IVS22-1C>T). Induced pluripotent stem cells (iPSC) were reprogrammed by sendai virus encoding Klf-4, c-Myc, Oct-4, and Sox-2. The iPSC line showed pluripotency, which was verified by immunofluorescence staining.
View Article and Find Full Text PDFBackground: Recent studies have demonstrated that long non-coding RNAs (LncRNAs) can influence bone cell differentiation and formation. However, it is unclear whether lncRNA HCG18 is involved in osteoporosis (OP). This study was conducted to investigate the regulation of HCG18 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).
View Article and Find Full Text PDFAs a class of covalently closed non-coding RNAs, circular RNAs (circRNAs) are key regulators in various malignancies including osteosarcoma (OS). In the present study, we found that circular RNA PVT1 (circPVT1) was up-regulated in OS and correlated with poor prognosis of patients with OS. Functionally, we showed that knockdown of circPVT1 suppressed OS cells metastasis.
View Article and Find Full Text PDFKümmell's disease is a delayed complication of osteoporotic vertebral compression fracture (OVCF) . The disease can occur months or even years after the initial spinal injury. Unlike the common osteoporotic compression fracture, it develops slowly and causes intractable pain or neurological dysfunction due to intraspinal instability.
View Article and Find Full Text PDFPeripheral blood was collected from a clinically diagnosed 64-year old male multiple schwannoma patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo.
View Article and Find Full Text PDFPeripheral blood was collected from a clinically diagnosed 79-year old male sporadic Parkinson's disease patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo.
View Article and Find Full Text PDFPeripheral blood was collected from a clinically diagnosed 72-year old male patient with later onset Alzheimer's disease. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo.
View Article and Find Full Text PDFPeripheral blood was collected from a clinically diagnosed 60-year old female patient with multiple schwannoma. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers, and the iPSC line was able to differentiate into the 3 germ layers in vivo.
View Article and Find Full Text PDFRecent studies suggest that microRNAs (miRNAs) are critical regulators in many types of cancer, including osteosarcoma. miR-342-3p has emerged as an important cancer-related miRNA in several types of cancers. However, the functional significance of miR-342-3p in osteosarcoma is unknown.
View Article and Find Full Text PDF