Publications by authors named "Weiqiong Liu"

Bacillus subtilis has been widely used in the expression of recombinant proteins due to its food safe and powerful secretion characteristic, but the current production level cannot meet the increasing industrial needs. To enhance the production of recombinant protein, we first screened target key genes that are directly or indirectly involved in protein synthesis, using CRISPRi technology targeting the whole genome, with industrial valuable Bacillus stearothermophilus α-amylase as the model protein. Then the screened key genes were combined, yielding a chassis strain that owning enhanced protein expression capability.

View Article and Find Full Text PDF

Glycosyltransferases (GTs) are pivotal enzymes involved in glycosidic bond synthesis, which can lead to either retention or inversion of the glycosyl moiety's anomeric configuration. However, the catalytic mechanism for retaining GTs remains a subject of controversy. In this study, we employ MD and QM/MM metadynamics to investigate the double-displacement catalytic mechanism of the retaining β-Kdo transferase WbbB.

View Article and Find Full Text PDF

Amylomaltases (AMs) play important roles in glycogen and maltose metabolism. However, the molecular mechanism is elusive. Here, we investigated the conformational dynamics of the 250s loop and catalytic mechanism of AM using path-metadynamics and QM/MM MD simulations.

View Article and Find Full Text PDF

β--Acetylhexosaminidases (HEXs) play important roles in human diseases and the biosynthesis of human milk oligosaccharides. Despite extensive research, the catalytic mechanism of these enzymes remains largely unexplored. In this study, we employed quantum mechanics/molecular mechanics metadynamics to investigate the molecular mechanism of HEX (HEX), which has shed light on the transition state structures and conformational pathways of this enzyme.

View Article and Find Full Text PDF

4,6-α-glucanotransferase (4,6-α-GT), as a member of the glycoside hydrolase 70 (GH70) family, converts starch/maltooligosaccharides into α,1-6 bond-containing α-glucan and possesses potential applications in food, medical and related industries but does not satisfy the high-temperature requirement due to its poor thermostability. In this study, a 4,6-α-GT (ΔGtfB) from Limosilactobacillus fermentum NCC 3057 was used as a model enzyme to improve its thermostability. The loops of ΔGtfB as the target region were optimized using directed evolution, sequence alignment, and computer-aided design.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionks8tvga3hpgubv72gphggheitdkhpfia): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once