N injection into coal seams can effectively enhance the gas flow capacity in the late stage of pumping, thereby improving the recovery rate and recovery efficiency of low coalbed methane (CBM). To reveal the thermodynamic flow coupling relationship between the reservoir and the gas phase and its transportation mechanism in the process of thermal N injection, a mathematical coupling model of N injection that considers the deformation of the coal seam, fluid transportation, and temperature change was established. The influence of the seepage heat transfer effect of the coal seam under the effect of N injection on the CH extraction rate was investigated using this model.
View Article and Find Full Text PDFNanoparticles are added to clean fracturing fluids to formulate nanoparticle-modified clean fracturing fluids, compared with ordinary clean fracturing fluid, it has the advantages of good temperature resistance, low loss of filtration, and so forth, and has good application prospects in coal-bed methane. However, the current research on nanoparticle-modified clean fracturing fluids is mostly focused on the study of their rheological properties. The mechanism of nano-fracking fluid influence on methane adsorption-desorption characteristics is not clear.
View Article and Find Full Text PDFIn the hydraulic fracturing process, fracturing fluid contacts coal rock and physical and chemical reactions occur, which inevitably damage the pore structure of the coal rock and affect the adsorption and desorption capacity of the coal rock. In this paper, a low-temperature N adsorption method and scanning electron microscopy (SEM) were used to characterize coal samples. Using gas adsorption/desorption tests, high-, medium-, and low-rank coal samples before and after the clean fracturing fluid treatment were systematically studied.
View Article and Find Full Text PDF