Publications by authors named "Weiqin Sheng"

Conductive hydrogels have shown promising application prospects in the field of flexible sensors, but they often suffer from poor mechanical properties, low sensitivity, and lack of frost resistance. Herein, we report a tough, highly sensitive, and antifreeze strain sensor assembled from a conductive organohydrogel composed of a dual-cross-linked polyacrylamide and poly(vinyl alcohol) (PVA) network, as well as MXene nanosheets as nanofillers and poly(3,4-ethylenedioxythiophene)-doped poly(styrenesulfonate) (PEDOT/PSS) as the main conducting component (PPMP-OH organohydrogel). The tensile strength and toughness of PPMP-OH had been greatly enhanced by MXene nanosheets due to the mechanical reinforcement of MXene nanosheets, as well as various strong noncovalent interactions formed in the organohydrogels.

View Article and Find Full Text PDF

Living composites comprising of both biotic and abiotic modules are shifting the paradigm of materials science, yet challenges remain in effectively converging their distinctive structural and functional attributes. Here we present a bottom-up hybridization strategy to construct functionally coherent, electrochemically active biohybrids with optimal mass/charge transport, mechanical integrity, and biocatalytic performance. This biohybrid can overcome several key limitations of traditional biocarrier designs and demonstrate superior efficiency in metabolizing low-concentration toxic ions with minimal environmental impact.

View Article and Find Full Text PDF

Papain enzyme was successfully immobilized by covalent bonding onto biocompatible FeO/SF nanoparticles, which were prepared with the soft template of silk fibroin (SF). The optimized immobilization condition is pH6.0, hydrolysis time of 60min, and an enzyme/support ratio of 10.

View Article and Find Full Text PDF

The major hurdle in detection of dopamine (DA) by electro-analysis is the presence of physiological interferents with a similar oxidation potential of DA. The conventional method is to enlarge the difference of their oxidation potentials. Here, we report an unconventional method to detect DA via leucodopaminechrome on CeO nanorods.

View Article and Find Full Text PDF

This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuum activation involves a low temperature and low-costing, which can achieve the reduction of GO, the self doping of Ti(3+) in TiO2 and the loading of TiO2 nanoparticles on GR surface at the same time. These resulting TiO2-graphene composites show the high photodegradation rate of MO, high hydrogen evolution activity and excellent IPCE in the visible light irradiation.

View Article and Find Full Text PDF

Hierarchical olive-like structured carbon-Fe3O4 nanocomposite particles composed of a hollow interior and a carbon coated surface are prepared by a facile, silk protein-assisted hydrothermal method. Silk nanofibers as templates and carbon precursors first regulate the formation of hollow Fe2O3 microspheres and then they are converted into carbon by a reduction process into Fe3O4. This process significantly simplifies the fabrication and carbon coating processes to form complex hollow structures.

View Article and Find Full Text PDF

A one-step hydrothermal process with silk fibroin (SF) nanofibers as the template and coating was developed to synthesize core-shell magnetite/SF nanoparticles with limited controllable sizes. The FeO nanoparticles gradually aggregated into nanospheres with sizes increased from 120 to 500 nm by increasing the SF content in the reaction system. The magnetic properties and biocompatibility of FeO/SF nanoparticles, as well as their functional ability with antibodies are also discussed to assess their possible applications in MRI and bio-separation.

View Article and Find Full Text PDF

Silkworm silk has been widely used as a textile fiber, as biomaterials and in optically functional materials due to its extraordinary properties. The β-sheet-rich natural nanofiber units of about 10-50 nm in diameter are often considered the origin of these properties, yet it remains unclear how silk self-assembles into these hierarchical structures. A new system composed of β-sheet-rich silk nanofibers about 10-20 nm in diameter is reported here, where these nanofibers formed into "flowing hydrogels" at 0.

View Article and Find Full Text PDF